79 Amazon Research Awards recipients announced

Awardees, who represent 54 universities in 14 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 79 award recipients who represent 54 universities in 14 countries.

This announcement includes awards funded under four call for proposals during the fall 2022 cycle: AWS AI, Automated Reasoning, Prime Video, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

"Complexities of AI/ML challenges at scale often intersect more than one discipline and require creative and diverse approaches to tackle these issues," said Arash Nourian, AWS general manager, Machine Learning Engines. "I was amazed by the diversity of disciplines and the scientific content of Awardee’s submissions that collectively could represent significant potential impact on both the AI/ML research community and society."

“The incredible response to Prime Video’s fall 2022 Call for Proposals is a testament to the exciting work the ARAs have inspired across four cutting-edge research categories,” said BA Winston, VP of Technology at Prime Video. “I am delighted by the winning proposals and look forward to the ongoing research across several areas in Prime Video that is helping us create even more impactful customer-obsessed technology.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order, fall 2022 cycle call-for-proposal recipients, sorted by research area.

AWS AI

AWS AI - ARA fall 2022.png

RecipientUniversityResearch title
Jonathan AfilaloMcGill UniversityCoreslicer: deep learning of CT images for frailty assessment in clinical care
Saman AmarasingheMassachusetts Institute of TechnologyReimagining the compiler in the cloud
Akshay ChaudhariStanford UniversityLarge-scale self-supervised learning for medical imaging
Soheil FeiziUniversity Of Maryland, College ParkTowards mitigating spurious correlations in deep learning
Aikaterini FragkiadakiCarnegie Mellon UniversityAnalogical networks for continual memory-modulated visual learning and language understanding
Mark GersteinYale UniversityPrivacy-preserving storage, sharing, and analysis for genomics data
Joseph GonzalezUniversity Of California, BerkeleyA unified platform for training and serving large models
Michael GubanovFlorida State UniversityAn interactive polygraph for robust access to scientific knowledge
Yan HuangCarnegie Mellon UniversityCombating algorithmic bias inherited from human decision making: a human-AI perspective
CV JawaharThe International Institute of Information Technology - HyderabadDeeper understanding of multilingual handwritten documents: from recognition to dialogues
Zhihao JiaCarnegie Mellon UniversityCombining ML and systems optimizations for sustainable and affordable ML
Daniel KhashabiJohns Hopkins UniversityCrowdsourcing with machine backbone
Rahul KrishnanUniversity Of TorontoTowards a learning healthcare system
Anastasios KyrillidisRice UniversityEfficient and affordable transformers for distributed platforms
Kevin LeachVanderbilt UniversityDocumentnet: iterative data collection for building a robust document understanding dataset
Lei LiUniversity Of California, Santa BarbaraReal-time robust simultaneous interpretation with few samples
Xiaoyi LuUniversity Of California, MercedScaling collective communication for distributed deep learning training
Yunan LuoGeorgia Institute of TechnologyCalibrated and interpretable geometric deep learning for robust drug screening
Graham NeubigCarnegie Mellon UniversityTowards more reliable and interpretable code language models
Qing QuUniversity of Michigan, Ann ArborPrinciples of deep representation learning via neural collapse
Mirco RavanelliConcordia UniversityToward empathetic conversational AI
Amit Roy-ChowdhuryUniversity of California, RiversideExploring privacy in deep metric learning: applications in computer vision
Chirag ShahUniversity of WashingtonFairness as a service: operationalizing fairness in search and recommendation applications through a novel multi-objective optimization framework
Kristina SimonyanMassachusetts Eye and Ear/Harvard Medical SchoolMachine learning for automated speech processing for real-time speech prosthesis in neurological disorders
Berrak SismanUniversity of Texas, DallasExplainable AI for expressive voice synthesis
Dawn SongUniversity Of California, BerkeleyFedOps: an abstraction for trustworthy federated learning
Peter SpirtesCarnegie Mellon UniversitySystem-level and long-term fairness through causal learning and reasoning
Ion StoicaUniversity Of California, BerkeleyA unified platform for training and serving large models
Vasileios SyrgkanisStanford UniversityAutomating the causal machine learning pipeline
Carlo TomasiDuke UniversityDeep neural network classifiers with margins in input space
Yatish TurakhiaUniversity Of California, San DiegoMachine learning enabled wastewater-based epidemiology
Xiaolong WangUniversity of California, San DiegoLearning implicit neural foundation models
Neeraja YadwadkarUniversity Of Texas, AustinEasy-to-use and cost-efficient distributed inference serving
Hamed ZamaniUniversity Of Massachusetts AmherstOn the optimization of retrieval-enhanced machine learning models
Ce ZhangETH ZurichFedOps: an abstraction for trustworthy federated learning
Tianyi ZhangPurdue UniversityHuman-in-the-loop deep learning optimization for better usability, transparency, and user trust
Yiying ZhangUniversity Of California, San DiegoTraining deep neural networks with "zero" activations
Jishen ZhaoUniversity Of California, San DiegoSemantic-informed document structure recognition with large language models
Ben ZhaoUniversity Of ChicagoDigital forensics for deep neural networks
Heather ZhengUniversity of ChicagoDigital forensics for deep neural networks
Jun-Yan ZhuCarnegie Mellon UniversityCompositional personalization of large-scale generative models
Jia ZouArizona State UniversityA compilation framework for accelerating machine learning inference queries

Amazon Sustainability

Amazon Sustainability ARA fall 2022.png

RecipientUniversityResearch title
Vikram IyerUniversity of WashingtonComputational design and circular fabrication for sustainable electronics
Adriana SchulzUniversity of WashingtonComputational design and circular fabrication for sustainable electronics
Mari WinklerUniversity of WashingtonA novel bioreactor platform for continuous high‐rate bio-production

Automated Reasoning

Automated Reasoning ARA fall 2022.png

RecipientUniversityResearch title
Maria Paola BonacinaUniversità degli Studi di VeronaAdvances in conflict-driven SATisfiability modulo theories and assignments
Ahmed BouajjaniUniversite Paris-CiteSafe composition of distributed off-the-shelf components
Martin Nyx BrainCity, University Of LondonSnowshoes: overapproximating code footprints for safe program exploration
Anton BurtsevUniversity Of UtahAtmosphere: leveraging language safety and operating system design for verification
Alastair DonaldsonImperial College LondonDafnyDefender: automated testing for the Dafny ecosystem
Francois DupressoirUniversity Of BristolFormosa cryptography: computer-aided reasoning for high-assurance cryptographic design and engineering
Gidon ErnstLudwig Maximilian University of MunichSecurity specifications for Dafny
Pascal FontaineUniversity of LiègeSMT: modules, formats, and standards
Jeffrey FosterTufts UniversityAutomated testing of external methods in Dafny
Sicun GaoUniversity Of California, San DiegoMonte Carlo tree methods for decision-making in dReal
Philippa GardnerImperial College LondonGillian-Rust: unbounded verification for unsafe rust code
Limin JiaCarnegie Mellon UniversityEnabling one-line rust verification with program synthesis
Patrick LamUniversity Of WaterlooStatically inferring contracts from assertions & tests
Aravind MachiryPurdue UniversitySecurity verification and hardening of CI workflows
Anders MøllerAarhus UniversitySecuring node.js programs with static resource analysis
Magnus MyreenChalmers University Of TechnologyCompiling Dafny to CakeML
ThanhVu NguyenGeorge Mason UniversityScalable and precise DNN constraint solving with abstraction and conflict clause learning
Burcu Kulahcioglu OzkanDelft University of TechnologyCoverage-directed randomized testing of distributed systems
Bryan ParnoCarnegie Mellon UniversityVerus: developing provably correct and reliable rust code
Corina PasareanuCarnegie Mellon UniversityEnabling one-line rust verification with program synthesis
Ruzica PiskacYale UniversityFormalizing FISA: using automated reasoning to formalize legal reasoning
Elizabeth PolgreenUniversity of EdinburghAutomated and provably correct code modernization
Fred SchneiderCornell UniversityUsing non-deterministic executable specification to test properties that relate executions
Scott ShapiroYale UniversityFormalizing FISA: using automated reasoning to formalize legal reasoning
Marc ShapiroINRIA & Sorbonne Universite ParisSafe composition of distributed off-the-shelf components
Alexandra SilvaCornell UniversityAutomated reasoning for correctness and incorrectness
Yakir VizelTechnion – Israel Institute Of TechnologyLazy and incremental framework for solving CHCs
Florian ZulegerTechnische Universität WienAutomated cost analysis of data structures

Prime Video

Prime Video ARA fall 2022.png

RecipientUniversityResearch title
David BullUniversity of BristolGeneric deep video quality assessment in the extended parameter space
Eamonn KeoghUniversity of California RiversideA proposal to make any time series anomaly detection algorithm faster, more accurate and more practical
Xiaorui LiuNorth Carolina State UniversityDeep reinforcement learning for the mixed ranking of recommendations and advertisements with page-wise display
Jiliang TangMichigan State UniversityDeep reinforcement learning for the mixed ranking of recommendations and advertisements with page-wise display
Hanghang TongUniversity of Illinois Urbana-ChampaignGraph algorithms for personalized recommendation
Fan ZhangUniversity of BristolGeneric deep video quality assessment in the extended parameter space

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.