105 Amazon Research Awards recipients announced

Awardees, who represent 51 universities in 15 countries, have access to Amazon public datasets, along with AWS AI/ML services and tools.

Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 105 award recipients who represent 51 universities in 15 countries.

This announcement includes awards funded under six call for proposals during the fall 2023 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography and Privacy, AWS Database Services, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society.

Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Recipients have access to more than 300 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Recommended reads
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

“We received a fantastic response to the cryptography and privacy engineering’s call for proposals. This was the first time we offered ARAs for cryptography and privacy, and the response far exceeded our expectations, in terms of both the number and quality of the proposals,” said Rod Chapman, senior principal applied scientist with AWS Cryptography. “Advanced cryptography plays a crucial role in building trust with our customers and regulators, especially in emerging domains such as cryptographic computing, generative AI, and privacy-preserving applications. We look forward to working with the new principal investigators to bring ever more impactful cryptographic technologies to fruition.”

Recommended reads
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

“Given that data is central to Amazon’s core businesses, I am excited by this opportunity to collaborate with universities on cutting-edge technologies for modern database systems,” said Doug Terry, vice president and distinguished scientist in AWS Database and AI Leadership. “These Amazon Research Awards allow us to support projects that have the potential for substantial advancement in important areas from correctness testing of SQL queries to new data models for generative AI applications.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order by last name, fall 2023 cycle call-for-proposal recipients, sorted by research area.

AI for Information Security

Photo grid shows the recipients of the 2023 fall AI for information security Amazon Research Awards

RecipientUniversityResearch title
Murat KocaogluPurdue UniversityCausal Anomaly Detection from Non-stationary Time-series in the Cloud
Hui LiuMichigan State UniversityHarnessing the Power of Weakly-Supervised Graph Representation Learning for Cybersecurity
Xiaorui LiuNorth Carolina State UniversityHarnessing the Power of Weakly-Supervised Graph Representation Learning for Cybersecurity
Thomas PasquierUniversity of British ColumbiaBuilding Robust Provenance-based Intrusion Detection
Michalis PolychronakisStony Brook UniversitySafeTrans: AI-assisted Transcompilation to Memory-safe Languages

Automated Reasoning

Photo grid shows the recipients of the 2023 fall automated reasoning Amazon Research Awards

RecipientUniversityResearch title
Armin BiereUniversity of FreiburgFrom Mavericks to Teamplayers: Fostering Solver Cooperation in Distributed SAT Solving
Victor BrabermanUniversidad de Buenos AiresAbstractions for Validating Distributed Protocol Reference Implementations
Varun ChandrasekaranUniversity of Illinois Urbana-ChampaignAutomating Privacy Compliance
Maria ChristakisTU WienTesting Dafny for Unsoundness and Brittleness Bugs
Werner DietlUniversity of WaterlooOptional Type Systems for Model-Implementation Consistency
Alastair DonaldsonImperial College LondonValidating Compilers for the Dafny Verified Programming Language
Azadeh FarzanUniversity of TorontoBetter Predictability in Dynamic Data Race Detection
Sicun GaoUniversity Of California, San DiegoProof Optimization and Generalization in dReal
Tobias GrosserUniversity Of CambridgeCorrect and High-Performance Domain-Specific Compilation with Lean and MLIR
Andrew HeadUniversity Of PennsylvaniaTYCHE: An IDE for Property-Based Testing
Kihong HeoKorea Advanced Institute Of Science and Technology - KAISTGenerative Translation Validation for JIT Compiler in the V8 JavaScript Engine
Frans KaashoekMassachusetts Institute of TechnologyFlotilla: Compositional Formal Verification of Liveness of Distributed Systems Implementations
Baris KasikciUniversity of Washington - SeattlePrivacy-Conscious Failure Reproduction for Root Cause Diagnosis in Large-Scale Distributed Systems
Laura KovacsTU WienQuAT: Quantifiers with Arithmetic Theories are Friends with Benefits
Shriram KrishnamurthiBrown UniversityParalegal: Scalable Tooling to Find Privacy Bugs in Application Code
Corina PasareanuCarnegie Mellon UniversityProving the Absence of Timing Side Channels in Cryptographic Applications
Jean Pichon-PharabodAarhus UniversityValidating Isolation of Virtual Machines in the Cloud
Benjamin PierceUniversity Of PennsylvaniaTYCHE: An IDE for Property-Based Testing
Ruzica PiskacYale UniversityDemocratizing the Law - Using LLMs and Automated Reasoning for Legal Reasoning
Malte SchwarzkopfBrown UniversityParalegal: Scalable Tooling to Find Privacy Bugs in Application Code
Peter SewellUniversity Of CambridgeThe Foundations of Cloud Virtual-machine Isolation
Scott ShapiroYale UniversityDemocratizing the Law - Using LLMs and Automated Reasoning for Legal Reasoning
Geoffrey SutcliffeUniversity Of MiamiAutomated Theorem Proving Community Infrastructure in the AWS Cloud
Joseph TassarottiNew York UniversityAsynchronous Couplings for Probabilistic Relational Reasoning in Dafny
Sebastian UchitelUniversidad de Buenos AiresAbstractions for Validating Distributed Protocol Reference Implementations
Josef UrbanCzech Technical UniversityLearning Based Synthesis Meets Learning Guided Reasoning
Thomas WiesNew York UniversityAutomating Privacy Compliance
Nickolai ZeldovichMassachusetts Institute of TechnologyFlotilla: Compositional Formal Verification of Liveness of Distributed Systems Implementations

AWS AI

Photo grid shows the recipients of the 2023 fall AWS AI Amazon Research Awards

RecipientUniversityResearch title
Pulkit AgrawalMassachusetts Institute Of TechnologyAdapting Foundation Models without Finetuning
Niranjan BalasubramanianStony Brook UniversityAn API Sandbox for Complex Tasks on Common Applications
Osbert BastaniUniversity Of PennsylvaniaUncertainty Quantification for Trustworthy Language Generation
Matei CiocarlieColumbia UniversityDo You Speak EMG? Generative Pre-training on Electromyographic Signals for Controlling a Rehabilitation Robot after Stroke
Caiwen DingUniversity of ConnecticutGraph of Thought: Boosting Logical Reasoning in Large Language Models
Yufei DingUniversity Of California, San DiegoA Hollistic Compiler and Runtime System for Efficient and Scalable LLM Serving
Xinya DuUniversity Of Texas At DallasProcess-guided Fine-tuning for Answering Complex Questions
Luciana FerrerUniversity of Buenos Aires - CONICETEfficient Adaptation of Generative Language Models through Unsupervised Calibration
Jakob FoersterUniversity Of OxfordCompute-only Scaling of Large Language Models
Nikhil GargCornell UniversityRecommendation systems in high-stakes settings
Georgia GkioxariCalifornia Institute Of TechnologyTowards a 3D Foundation Model: Recognize and Reconstruct Anything
Tom GoldsteinUniversity of MarylandBuilding Safer Diffusion Models
Aditya GroverUniversity of California, Los AngelesPersonalizing Multimodal Generative Models via In-Context Preference Modeling
Albert GuCarnegie Mellon UniversityScaling the Next Generation of Foundation Model Architectures
Mahdi S. HosseiniConcordia UniversityToward Auto-Populating Synoptic Reports in Diagnostic Pathology
Maliheh IzadiDelft University Of TechnologyUnderstanding and Regulating Memorization in Large Language Models for Code
Vijay Janapa ReddiHarvard UniversityBenchmarking the Safety of Generative AI Models with Data-centric AI Challenges
Adel JavanmardUniversity of Southern CaliforniaReliable AI for Generation of Medical Reports from MRI Scans
Jianbo JiaoUniversity Of BirminghamPCo3D: Physically Plausible Controllable 3D Generative Models
Subbarao KambhampatiArizona State UniversityUnderstanding and Leveraging Planning, Reasoning & Self-Critiquing Capabilities of Large Language Models
Kangwook LeeUniversity Of Wisconsin–MadisonInformation and Coding Theory-Based Framework for Prompt Engineering
Ales LeonardisUniversity Of BirminghamPCo3D: Physically Plausible Controllable 3D Generative Models
Anqi LiuJohns Hopkins University(Multi-)Calibrated Active Learning under Subpopulation Shift
Lydia LiuPrinceton UniversityFrom Predictions to Positive Impact: Foundations of Responsible AI in Social Systems
Song MeiUniversity Of California, BerkeleyMathematical Foundations and Physical Principles of Foundation Models and Generative AI
Pablo PiantanidaNational Centre for Scientific Research (CNRS)Efficient Adaptation of Generative Language Models through Unsupervised Calibration
Chara PodimataMassachusetts Institute Of TechnologyResponsible AI through User Incentive-Awareness
Bhiksha RajCarnegie Mellon UniversityText and Speech Large Language Models
Christian RupprechtUniversity Of OxfordViewset Diffusion for Probabilistic 3D Reconstruction
Olga RussakovskyPrinceton UniversityDiffusion models: Generative models beyond data generation
Vatsal SharanUniversity Of Southern CaliforniaDebiasing ML-based Decision Making using Multicalibration
Abhinav ShrivastavaUniversity Of MarylandAudio-conditioned Diffusion Models for Generating Lip-synchronized Videos
Rachee SinghCornell UniversityAccelerating collective communication for distributed ML
Vincent SitzmannMassachusetts Institute Of Technology2D and 3D Animation via Image-Conditional Generative Flow Models
Justin SolomonMassachusetts Institute Of TechnologyLightweight Algorithms for Generative AI
Mahdi SoltanolkotabiUniversity of Southern CaliforniaReliable AI for Generation of Medical Reports from MRI Scans
Qian TaoDelft University of TechnologyΦ-Generative Medical Imaging by Physics and AI (PhAI)
Yapeng TianUniversity Of Texas At DallasIntegrating Visual Alignment and Text Interaction for Multi-modal Audio Content Generation
Sherry Tongshuang WuCarnegie Mellon UniversityGenerating Deployable Models from Natural Language Instructions through Adaptive Data Curation
Florian TramerEth ZurichCan Technology Protect us from Generative AI?
Arie van DeursenDelft University Of TechnologyUnderstanding and Regulating Memorization in Large Language Models for Code
Andrea VedaldiUniversity Of OxfordViewset Diffusion for Probabilistic 3D Reconstruction
Carl VondrickColumbia UniversityViper: Visual Inference via Python Execution for Reasoning
Xiaolong WangUniversity of California, San DiegoGenerating Compositional 3D Scenes and Embodied Tasks with Large Language Models
Eric WongUniversity Of PennsylvaniaAdversarial Manipulation of Prompting Interfaces
Saining XieNew York UniversityImage Sculpting: Precise Image Generation and Editing with Interactive Geometry Control
Rex YingYale UniversityDiff-H: Hyperbolic Text-to-Image Diffusion Generative Model
Minlan YuHarvard UniversityTroubleshooting Distributed Training Systems
Zhiru ZhangCornell UniversityA Unified Approach to Tensor Graph Optimization

AWS Cryptography and Privacy

Photo grid shows the recipients of the 2023 fall AWS Cryptography and Privacy Amazon Research Awards

RecipientUniversityResearch title
Christopher BrzuskaAalto UniversitySecure Messaging: Updates Efficiency & Verification
Tevfik BultanUniversity of California, Santa BarbaraDetecting and Quantifying Information Leakages in Crypto Libraries
Muhammed EsginMonash UniversityPractical Post-Quantum Oblivious Pseudorandom Functions Supporting Verifiability
Nadia HeningerUniversity of California, San DiegoBringing Modern Security Guarantees to End-to-End Encrypted Cloud Storage
Tal MalkinColumbia UniversityCryptographic Techniques for Machine Learning
Peihan MiaoBrown UniversityAdvancing Private Set Intersection for Wider Industrial Adoption
Virginia SmithCarnegie Mellon UniversityRethinking Watermark Embedding and Detection for LLMs
Ron SteinfeldMonash UniversityPractical Post-Quantum Oblivious Pseudorandom Functions Supporting Verifiability

AWS Database Services

Photo grid shows the recipients of the fall 2023 AWS Database Services Amazon Research Awards

RecipientUniversityResearch title
Lei CaoUniversity Of ArizonaSEED: Simple, Efficient, and Effective Data Management via Large Language Models
Natacha Crooks

University Of California, Berkeley

Mammoths Are Slow: The Overlooked Transactions of Graph Data
Samuel MaddenMassachusetts Institute Of TechnologySEED: Simple, Efficient, and Effective Data Management via Large Language Models
Manuel RiggerNational University Of SingaporeDemocratizing Database Fuzzing

Kexin Rong

Georgia Institute Of Technology

Dynamic Data Layout Optimization with Worst-case Guarantees

Sustainability

Photo grid shows the recipients of the fall 2023 sustainability Amazon Research Awards

RecipientUniversityResearch title
Kate ArmstrongNew York Botanical GardenVERDEX: remote sensing of plant biodiversity
Praveen BolliniUniversity Of HoustonData-driven design and optimization of selective nanoporous catalysts for biofuel conversion
Brandon BukowskiJohns Hopkins UniversityData-driven design and optimization of selective nanoporous catalysts for biofuel conversion
Alan EdelmanMassachusetts Institute of TechnologyScientific Machine Learning with Application to Probabilistic Climate Forecasting and Sustainability
Kosa Goucher-LambertUniversity of California, BerkeleyLCAssist: An Interactive System for Life-Cycle-Informed Sustainable Design Decision-Making
Vikram IyerUniversity of Washington - SeattleData-Driven Sustainable Polymer Design for Circuits, Packaging, and Actuators
Can LiPurdue UniversityDesign and Analysis of Sustainable Supply Chains Using Optimization and Large Language Models
Damon LittleNew York Botanical GardenVERDEX: remote sensing of plant biodiversity
Aniruddh VashisthUniversity of Washington - SeattleData-Driven Sustainable Polymer Design for Circuits, Packaging, and Actuators
Ming XuTsinghua UniversityAdvancing Sustainable Practices in the AI Era: Integrating Large Language Models for Automated Life Cycle Assessment Modeling

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.