Amazon Research Award recipient Shrikanth Narayanan is on a mission to make inclusive human-AI conversational experiences.
Amazon Research Award recipient Shrikanth Narayanan, university professor and Niki & C. L. Max Nikias Chair in Engineering at the University of Southern California, is on a mission to make inclusive human-AI conversational experiences.
USC

“Who we are shapes what we say and how we say it”

Amazon Research Award recipient Shrikanth Narayanan is on a mission to make inclusive human-AI conversational experiences.

To hear Shrikanth Narayanan describe it, every single human conversation is a feat of engineering — a complex system for creating and interpreting a dizzying array of signals.

“When I'm speaking, I'm producing this audio signal, which you're able to make sense out of by processing it in your auditory system and neural systems,” Narayanan says. “Meanwhile, you’re decoding my intent and emotions. I've always been fascinated by that.”

Narayanan uses signal processing and machine learning to better understand this sort of real-world information transfer as university professor and Niki & C. L. Max Nikias Chair in Engineering at the University of Southern California (USC).

In 2020, his lab earned an Amazon Research Award for work on creating “inclusive human-AI conversational experiences for children." Today, he continues to collaborate with Amazon researchers through The Center for Secure and Trusted Machine Learning at the USC Viterbi School of Engineering. He’s also gained a reputation for training future Amazon scientists, with dozens of his former students now working full time for the company.

They’re finding new approaches to machine learning privacy, security, and trustworthiness that are helping to shape a future that Narayanan hopes will be more equitable, more secure, and more empathetic.

A signal with ‘complex underpinnings’

Narayanan recalls being fascinated by the scientific side of the human experience as early as high school. At the time, he says, he was mainly interested in our physiology. But in retrospect, he says, his curiosity had the tenor of a tinkering engineer.

Related content
With little training data and no mapping of speech to phonemes, Amazon researchers used voice conversion to generate Irish-accented training data in Alexa’s own voice.

“I was always interested in how it all worked,” he says. “I wanted to know how the heart worked, what happened in the brain, how it worked together. I was looking at humans through this lens of systems — the information flow that happens within individuals and between individuals.”

It was in the early ‘90s, while he was pursuing a PhD in electrical engineering at the University of California, Los Angeles, that he managed to combine his diverse interests.
“I was training in electrical engineering, but I really wanted the chance to look at something more directly connected to those human systems,” he says. He got the chance to intern at AT&T Bell Laboratories and realized human language held all the sorts of mysteries he’d been hoping to help solve.

Related content
Alexa Fund company unlocks voice-based computing for people who have trouble using their voices.

“Human speech is a signal that has these complex underpinnings,” he says. “There’s a cognitive aspect, the mind, and motoric aspects. We use the vocal instrument to create the signal, which in turn gets processed by people.”

Narayanan was fascinated by all the data involved in helping a conversation go right — and how easily conversations can go wrong.

He also became interested in the ways developmental disorders and health conditions could change the process of creating and interpreting speech, as well as how the rich diversity of human cultural contexts could impact the efficacy of voice recognition and synthesis.

In 2000, Narayanan founded USC’s Signal Analysis and Interpretation Laboratory (SAIL) to focus “on human-centered signal and information processing that address key societal needs.”

Over the last two decades, SAIL has enabled advances in audio, speech, language, image, video and bio signal processing, human and environment sensing and imaging, and human-centered machine learning. The lab also applies their findings to create “technologies that are inclusive, and technologies that support inclusion,” Narayanan says.

Related content
In a top-3% paper at ICASSP, Amazon researchers adapt graph-based label propagation to improve speech recognition on underrepresented pronunciations.

By that, he means that in addition to making sure technologies like voice recognition actually work for everyone — some of his earliest work involved helping AI pick up on a speaker’s emotional state regardless of their spoken language — he uses signal analysis and interpretation to help uncover and spotlight inequality.

In 2017, SAIL created algorithms for analyzing movie script dialogue in order to measure representation of BIPOC characters. Another SAIL tool analyzed footage directly to track and tally female screen time and speaking time.

In 2019, the lab reported that an algorithm trained on human speech patterns could predict whether or not couples facing hard times would actually stay together. It did so even better than a trained therapist presented with video recordings of the couples in question. Instead of interpreting the content of the discussions —or any visual cues— the algorithm focused on factors like cadence and pitch. A similar tool predicted changes in mental well-being in psychiatric patients as well as human physicians could.

Building trust in AI

“Even if we speak the same language,” Narayanan says, “who we are shapes what we say and how we say it. And this is particularly fascinating for children, because their speech represents a moving target with ongoing developmental changes.”

Even if we speak the same language, who we are shapes what we say and how we say it. And this is particularly fascinating for children, because their speech represents a moving target with ongoing developmental changes.
Shrikanth Narayanan

It’s not just that a child’s vocal instrument is constantly changing as they grow. They’re also developing cognitively and socially. That can mean rapid shifts in the words they use and how they use them. When you add in other factors that might make those speech shifts different from the already diverse average —cultural contexts, speaking or hearing impairments, cognitive differences, or developmental delays — training a voice assistant to effectively communicate with kids poses a real challenge.

The analysis gets even more complicated when interacting with two humans at once, especially if one is an adult and one is a child. Using Amazon Elastic Compute Cloud (Amazon EC2) to process their data, SAIL made advances in core competences like automatic speech recognition to improve speaker diarization — the process of partitioning audio of human speech to determine which person is speaking when.

Related content
Alexa Fund company’s assisted reality tech could unlock speech for hundreds of millions of people who struggle to communicate.

In 2021, SAIL also published a detailed empirical study of children’s speech recognition. They found that the state-of-the-art end-to-end systems setting high benchmarks on adult speech had serious shortcomings when it came to understanding children. The following year, the lab proposed a novel technique for estimating a child’s age based on temporal variability in their speech.

By measuring the same aspects of speech that make children difficult for AI to interact with — like variations in pause length and the time it takes to pronounce certain sounds — his team was able to reliably measure a child’s developmental stage. That could help AI adapt to the needs of users with less sophisticated language skills. Because the analysis relies on signals that can be stripped of other identifying information, the method also has the potential to help protect a child’s privacy.

Narayanan refers to this and similar projects as “trustworthy speech processing,” and says he and collaborators he’s found through Amazon are working to spread interest in the idea across their booming field. In March, the International Speech Communication Association (ISCA) awarded him their ISCA Medal for Scientific Achievement — the group’s most prestigious award — for his sustained and diverse contributions to speech communication science and technology and its application to human-centered engineering systems. He will receive the medal and deliver the opening keynote lecture in August at Interspeech 2023, held in Dublin, Ireland.

Narayanan notes that the last five years have seen radical changes in our ability to gather and analyze information about human behavior.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

“The technology systems have made this sort of engineering leap and allowed applications we hadn’t even imagined yet,” he says. “All these people are interacting with these devices in open, real-world environments, and we have the machine learning and deep learning advances to actually use that audio data.”

The next big challenge, he says, is figuring out how to process that data in a way that not only serves the user, but ensures their trust. In addition to continuing to study how various developmental differences might impact voice recognition—and how AI can learn to adapt to them—Narayanan hopes to find new ways to mask as much user data as possible for privacy while pulling out the signals that voice assistants need.

Ushering in the next generation of researchers

Working with Amazon enables Narayanan’s lab to explore key research themes through a practical lens. He notes that collaborations of this nature provide academics like himself with the time and support to tackle complex, delicate research questions — such as those involving children and other vulnerable populations.

In addition, Naraynan’s graduate students get to work directly with Amazon scientists to understand the potential practical applications of their research.

“This kind of partnership really takes research to the next level,” he says.

The AI revolution that's happening has a very nice connection to what's happening at Amazon, so naturally it was a place where my students found the most exciting challenges and opportunities.
Shrikanth Narayanan

Narayanan has also encouraged dozens of his students to pursue internships at Amazon to explore what industry has to offer. Just as his time at Bell Laboratories helped to crystalize his own interests, he says, he’s watched countless young engineers find exciting new applications for their skills at Amazon.

What started as a gentle nudge to consider Amazon internships and job postings has grown into a steady pipeline of Amazon hires — one that Narayanan says owes entirely to the merits of his lab’s alums.

Angeliki Metallinou, a senior applied science manager for Alexa AI, joined Amazon fulltime in 2014 with Narayanan’s encouragement. Alexa was a top-secret project at the time, so she didn’t know exactly what she’d be working on until she got there. She credits Narayanan with encouraging her to dive in.

Related content
How he parlayed an internship to land an expanded role at Amazon while pursuing his master’s degree.

“As a student, I hadn’t realized the extent that Amazon scientists collaborate with academia and are able to publish their work at top tier venues and conferences,” she recalls. “I wasn’t even aware that there was such a strong science community here. But Shri already had a few former PhD students working at Amazon, and he recommended it as a great place for an industry career.”

Rahul Gupta, a senior applied scientist for Amazon Alexa, first connected with Amazon for an internship near the end of his SAIL PhD in 2015. These days, he says, he has one or two SAIL students doing summer internships in his group alone.

“There's really good cultural alignment between SAIL and Amazon,” Gupta says.

Narayanan, who proudly displays photos of all of his lab graduates on the wall of his office, admits he’s lost count of how many have worked at Amazon over the years.

“It's exciting,” he says. “The AI revolution that's happening has a very nice connection to what's happening at Amazon, so naturally it was a place where my students found the most exciting challenges and opportunities. But I’ve also seen many of them progress into leadership positions, which I did my best to set them up for — I always encourage creativity and collaboration, and I don’t micromanage them in my lab.”

Now that his graduates are thriving at Amazon, he says, the internship opportunities for his current students are all the more robust.

“It sustains itself,” he says. “They shine in what they do at Amazon and in the community, and that connects back to the lab. It’s incredibly exciting.”

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation