Blanca Rodriguez, a professor of computational medicine at the University of Oxford
Blanca Rodriguez, a professor of computational medicine at the University of Oxford, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Blanca Rodriguez: Computational simulation of the human heart

The University of Oxford professor believes computer modeling and simulation are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

When Blanca Rodriguez began her exploration of the computational simulation of the human heart more than 20 years ago, the idea that an individual heart could be digitally recreated and analyzed using AI and machine learning to simulate which therapies would most effectively treat heart diseases was little more than a promising concept. 

Today, having devoted her career to the nascent field of computational cardiology, Rodriguez, a professor of computational medicine at the University of Oxford and a Wellcome Trust Senior Research Fellow, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Professor Blanca Rodriguez on how computer models can replace animal research

Computer simulation is hardly a new technology. In 1960, an Oxford biologist named Denis Noble began experimenting with mathematical models of the heart. Engineers in the automotive and aerospace industries have long embraced such simulation techniques, Rodriguez points out. All new vehicles and aircraft are designed with AI-based computer simulation as a key tool to virtually model each function, design element, and potential outcome. This concept, known as a digital twin, is now being embraced in the world of cardiology, and Rodriguez is a leading proponent.

“We’re doing the same thing with the heart, which is very challenging,” Rodriguez said. “We are gathering the clinical data of a patient and trying to build a virtual tool with those data. We want to simulate how that particular heart works, and simulate whether certain therapies or devices would work better than others so that we can understand how the diseases are affecting a particular patient in a particular way.”

Using AI and machine learning to crunch the massive amounts of clinical data, along with the ability to personalize that data for each individual patient, represents a significant breakthrough in computational cardiovascular science, Rodriguez said. As the technology is refined and improved, the ability to accommodate each patient’s unique physiology will inevitably lead to better and less invasive outcomes.

“We’re trying to understand and predict whether some therapies work better for certain patients and to understand disease conditions in a more personalized way,” Rodriguez explained.

In silico method

This “in silico” or computational methodology — as opposed to in vitro or in vivo — is likely to become the de facto method for drug development, and potentially for clinical treatment of heart patients in the future. Rather than having a generic, one-size-fits-all model, the digital twin will reveal the intricacies and disease conditions that impact each human being in a distinctive way.

A 2018 recipient of an AWS Machine Learning Research Award, Rodriguez’s immersion at the intersection of cardiology and computer science was hardly the career path she anticipated. A native of the Mediterranean port city of Valencia in Spain, Rodriguez received a degree in electrical engineering from the Universidad Politecnica de Valencia in 1997.

“I knew nothing about medicine or cardiology and nobody in my family was doing anything like this,” she said. But when she attended a talk about research in cardiology by Jose Jalife, a renowned University of Michigan arrhythmia specialist, she became “absolutely fascinated by the topic.” She immediately decided to pursue a PhD in computational medicine. She joined the Oxford faculty as a senior post-doctoral fellow in 2004 and has devoted her career to breakthrough research in the field.

Her work has attracted both academic and industry attention. Computer simulation is already having an impact in the medical and pharmaceutical communities. Until recently, drug companies have relied solely on animal testing for the most accurate and reliable way to test new drugs for effectiveness and side effects. According to research, animal testing yields a 75 to 85 percent accuracy rate and sometimes leads to drugs being withdrawn from the market due to safety issues.

The promise of computational models

Computational models of human heart cells are already providing much higher accuracy levels, with the added benefit of reducing the controversial use of animal testing, improving drug safety, and having greater likelihood of predicting adverse drug reactions in humans. 

“For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models, and that’s what has made industry very interested,” Rodriguez said. “We can replace some of the animal experiments and lower the costs. Plus, it’s fast.”

For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models.
Blanca Rodriguez

To that end, Rodriguez’s lab at Oxford has been collaborating not only with clinicians but also with the pharmaceutical industry, which is intrigued by the promise of computer models to test drug therapies prior to clinical trials. She is working with such giants at GSK, AstraZeneca, Sanofi, UCB, and Merck.

Gaining this kind of industry credibility is one of the most significant outcomes, according to Rodriguez, because several years ago these companies “were very skeptical. They had little knowledge of these computational methods so we had to collaborate with them and make the software really easy to use,” she explained. “We worked not only on the computational aspects, but also the human aspects to build credibility for these methods. That was always a challenge.” 

Using these techniques, drug makers can determine early on whether a certain drug has side effects. “Our knowledge of the human heart is such that we can build mathematical equations on the data we have and embed those equations in software programs that we can use to simulate what a drug is doing to the human heart,” she explained.

In addition, the work has attracted the attention and cooperation of important regulatory agencies such as the US Food and Drug Administration and various European regulators. Rodriguez’s Oxford lab is already jointly publishing white papers with such agencies.

The AWS Machine Learning Research Award has been a significant addition to the available resources for her group, Rodriguez said. “The MLRA has been instrumental for our work in generating methodological advances and demonstrating the potential of in silico clinical trials,” Rodriguez said. “We have published important papers describing the development of mathematical models of the human heart. These are being used for drug testing in academia, industry and regulatory agencies such as the FDA.”

Faster (and better) data analysis

In recent years, breakthroughs in AI and ML techniques have enabled much greater effectiveness using computational simulation by dramatically accelerating the speed of large dataset analysis. Images of thousands of human hearts can be analyzed in nanoseconds and, simultaneously, new biomarkers emerge that more accurately predict patient outcomes and preferred therapies.

These AI programs also enable the identification of subgroups of patients who share similar features but might have different conditions. People who have had a heart attack, for example, tend to be lumped together in one massive group. “But actually, the manifestation of the heart attack is very different in individual patients. AI and machine learning can help in identifying subgroups of patients who share the same features and could potentially benefit from a particular therapy,” Rodriguez said.

Among the challenges for AI and machine learning researchers is gaining access to huge databases of clinical data in order to test these models and train the algorithms. At Oxford, Rodriguez’s team has access to the massive UK Biobank, a large-scale biomedical database and research resource, and some hospitals are already sharing digitized clinical data. But due to privacy issues and cost constraints, vital data sets like these remain elusive.

“Our work depends on access to good datasets,” Rodriguez pointed out. “Not all hospitals are gathering data and there are a lot of ethical issues involved. Another challenge is finding candidates to do the research, particularly computer scientists who are able to understand medicine. People need to be both technically talented but also aware and knowledgeable about the clinical challenges.”

Already seeing the impact of her work, Rodriguez said the technology can accelerate the development and implementation of important cardiovascular therapies, making those therapies more effective and safer for patients. The next decade promises to hold dramatic advances. “I don’t think it’s a dream. It’s happening,” she declared. “It’s just going to take time.”

Research areas

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
GB, Cambridge
The Artificial General Intelligence team (AGI) has an exciting position for an Applied Scientist with a strong background NLP and Large Language Models to help us develop state-of-the-art conversational systems. As part of this team, you will collaborate with talented scientists and software engineers to enable conversational assistants capabilities to support the use of external tools and sources of information, and develop novel reasoning capabilities to revolutionise the user experience for millions of Alexa customers. Key job responsibilities As an Applied Scientist, you will develop innovative solutions to complex problems to extend the functionalities of conversational assistants . You will use your technical expertise to research and implement novel algorithms and modelling solutions in collaboration with other scientists and engineers. You will analyse customer behaviours and define metrics to enable the identification of actionable insights and measure improvements in customer experience. You will communicate results and insights to both technical and non-technical audiences through written reports, presentations and external publications.
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Artificial General Intelligence (AGI) organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services.
IL, Tel Aviv
Are you an inventive, curious, and driven Applied Scientist with a strong background in AI and Deep Learning? Join Amazon’s AWS Multimodal generative AI science team and be a catalyst for groundbreaking advancements in Computer Vision, Generative AI, and foundational models. As part of the AWS Multimodal generative AI science team, you’ll lead innovative research projects, develop state-of-the-art algorithms, and pioneer solutions that will directly impact millions of Amazon customers. Leveraging Amazon’s vast computing power, you’ll work alongside a supportive and diverse group of top-tier scientists and engineers, contributing to products that redefine the industry. Key job responsibilities * Lead research initiatives in Multimodal generative AI, pushing the boundaries of model efficiency, accuracy, and scalability. * Design, implement, and evaluate deep learning models in a production environment. * Collaborate with cross-functional teams to transfer research outcomes into scalable AWS services. * Publish in top-tier conferences and journals, keeping Amazon at the forefront of innovation. * Mentor and guide other scientists and engineers, fostering a culture of scientific curiosity and excellence.
US, WA, Seattle
We are seeking a highly skilled economist to measure and understand how each Customer Service activity impacts customers. This candidate's analysis will assist teams across Amazon to prioritize defect elimination efforts and optimize how we respond to customer contacts. This candidate will partner closely with our product, program, and tech teams to deliver their findings to users via systems and dashboards that guide Customer Service planning and policy rules. Key job responsibilities - Develop Causal, Economic, and Machine Learning models at scale. - Engage in economic analysis and raise the bar for research. - Inform strategic discussions with senior leaders across the company to guide policies. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team The Worldwide defect elimination team's mission is to understand and resolve all issues impacting customers at scale. The Customer Service Economics and Optimization team is a force multiplier within this group, helping to understand the impact of these issues and our actions to optimize the customer experience.
NL, Amsterdam
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. The AB Sales Analytics, Data, Product and Tech (ADAPTech) team uses CRM, data, product, and science to improve Sales productivity and performance. It has four pillars: 1) SalesTech maintains Salesforce to enable Sales workflows, and supports >2K users in nine countries; 2) Product and Science builds tools embedded with bespoke Machine Learning (ML) and GenAI large language models to enable sales reps to prioritize top accounts, position the right Amazon Business (AB) product features, and take actions based on critical customer events; 3) Sales Data Management (SDM) and Sales Account Management (SAM) enrich customer profiles and business hierarchies while improving productivity through automation and integration of internal/external tools; and 4) Business Intelligence (BI) enables self-service reporting simplifying access to key insights through WBRs and dashboards. Sales teams leverage these products to identify which customers to target, what features to target them with, and when to target them, in order to capture their share of wallet. A successful Applied Scientist at Amazon demonstrates bias for action and operates in a startup environment, with outstanding leadership skills, and proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. We need great leaders to think big and design new solutions to solve complex problems using machine learning (ML) and Generative AI techniques to improve our customers’ experience when using AB. You have hands-on experience making the right decisions about technology, models and methodology choices. Key job responsibilities As an Applied Scientist, you will primarily leverage machine learning techniques and generative AI to outreach customers based on their life cycle stage, behavioral patterns, and purchase history. You may also perform text mining and insight analysis of real-time customer conversations and make the model learn and recommend the solutions. Your work will directly impact the trust customers place in Amazon Business. You will partner with product management and technical leadership to identify opportunities to innovate customer journey experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but also play a crucial role in shaping strategies. Additional responsibilities include: -Design, implement, test, deploy and maintain innovative data and machine learning solutions to further the customer experience. -Create experiments and prototype implementations of new learning algorithms and prediction techniques -Develop algorithms for new capabilities and trace decisions in the data and assess how proposed changes could potentially impact business metrics to cater needs of Amazon Business Sales -Build models that measure incremental value, predict growth, define and conduct experiments to optimize engagement of AB customers, and communicate insights and recommendations to product, sales, and finance partners. A day in the life In this role, you will be a technical expert with significant scope and impact. You will work with Technical Product Managers, Data Engineers, other Scientists, and Salesforce developers, to build new and enhance existing ML models to optimize customer experience. You will prototype and test new ideas, iterate quickly, and deploy models to production. Also, you will conduct in-depth data analysis and feature engineering to build robust ML models.
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Seattle
At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in machine learning, artificial intelligence and related fields. Amazon scientists employ the company's working backwards method to identify problems to solve on behalf of customers in research areas ranging from machine learning to operations, GenAI, robotics, quantum computing, computer vision, economics, search, sustainability and more. Learn more about Amazon Science here: https://www.amazon.science/ We are hiring across multiple businesses and in many locations across the US. Apply here to learn more about open roles that could be a compelling fit for your background. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, WA, Bellevue
Amazon Web Services (AWS) offers a broad set of global compute, storage, database, analytics, application, and deployment services that help organizations move faster, lower IT costs, and scale applications. These services are trusted by the largest enterprises and the hottest start-ups to power a wide variety of workloads including web and mobile applications, data processing and warehousing, storage, archive, and many others. We are looking for an applied scientist to help us define and build a new enterprise application. AWS Applications is building services in Supply Chain Management and is looking for a scientist to tackle complex science problems in Supply Chain including demand planning, supply planning and sustainability which will be used by our customers across a wide range of industries. We operate a fast growing business and our journey has only started. Our mission is to build the most efficient and optimal supply chain software on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in optimization, operations research, and machine learning to grow our businesses. As an Applied Scientist, you’ll design, model, develop and implement state-of-the-art models and solutions used by users worldwide. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy models to improve state-of-the-art for time series. You will have the opportunity to work on our assistant solution allowing our users to ask data questions in natural language and get intelligent insights and exceptions. Key job responsibilities Lead and partner with the engineering to drive modeling and technical design for complex business problems. Develop accurate and scalable machine learning models to solve our hardest supply chain problems. Lead complex modeling analyses to aid management in making key business decisions and set product direction. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.