Cracking the code of how diseases affect the body

ARA recipient Marinka Zitnik is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies.

Early in her career, computer scientist Marinka Zitnik confronted a biomedical mystery: among 12,000 genes, which handful played a role in the response of a model organism to bacterial infection? A genuine needle-in-a-haystack situation.

Marinka Zitnik portrait.png
Marinka Zitnik, an assistant professor of biomedical informatics at the Harvard Medical School, whose Amazon Research Award supports her work on unlocking the potential of AI-augmented drug discovery at the global scale through the online platform Therapeutics Data Commons.

But when Zitnik fed the biomedical data into a machine learning algorithm of her own devising, it predicted eight genes most likely to be involved. When those candidates were tested in the lab, the research team found that six of them were indeed implicated in the infection. Her method had proven sensationally successful.

"As someone who was trained in computer science at the time, it was so rewarding to make an impact in another area,” says Zitnik. “It was a turning point for me.”

That turning point, in 2013, led to a decade of research in machine learning and to Zitnik's current role as assistant professor of biomedical informatics at Harvard Medical School. At Harvard's Zitnik Lab, she is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies. And with the support of an Amazon Research Award, she is working to unlock the potential of AI-augmented drug discovery at the global scale through the online platform Therapeutics Data Commons.

Today, of course, bioinformatics is an established and growing discipline. But during Zitnik’s final year at high school it was a magic word, one she hadn’t heard before, that suddenly revealed how she could combine her passion for computers, programming, and mathematics with her ambition to make a big impact on society.

Related content
"I hope we have accelerated HIV vaccine development by providing findings that we and others can build on."

“I stumbled across a lecture given by a university recruiter, and I learned this word. Bioinformatics combines computation and biology. It was an emerging area that really sparked my interest,” says Zitnik. Following her subsequent degree in computer science and mathematics at the University of Ljubljana, Slovenia, she stayed and started a PhD in computer science in 2012, all the while with medicine in mind.

“I wanted to deeply understand the complex problems in biology and medicine that I could use computation to help solve,” Zitnik says.

Bottlenecks and challenges

Early in Zitnik’s PhD, she published several machine learning papers that were read by scientists at a variety of biomedical institutions. Many reached out to invite her to their labs to collaborate in applying her algorithms to their data. During her PhD, Zitnik joined forces with clinicians, biomedical researchers, geneticists, and computer scientists around the world, including Stanford University and Imperial College London.

“I wanted to learn about the process of fundamental biological discovery in a lab — the bottlenecks and the challenges,” she says.

One of these collaborations — with Baylor College of Medicine in Houston, Texas — was particularly encouraging: the 12,000-gene challenge. The conventional approach would have required many thousands of screening experiments, testing each gene in turn. The success of Zitnik’s algorithms meant the saving of a great deal of time and resources.

Related content
Tibshirani is a featured speaker at the first virtual Amazon Web Services Machine Learning Summit on June 2.

“That was the first time I saw that coupling AI predictions with experimental biological work in the lab can improve experimental yield by an order of magnitude,” says Zitnik.

Fast forward to 2019, when Zitnik arrived at Harvard University to set up her lab. Zitnik focused on two closely linked areas of medicine that could also benefit from AI. One is how machine learning can enable an accurate diagnosis for a patient based on a wide variety of information, from their genetic code and blood test results to their medical history and lifestyle data. The second area involves identifying and developing possible treatments and therapies for these diagnoses.

Therapeutics Data Commons

More than this, though, Zitnik wanted to unlock the potential of AI-augmented medicine at the global scale. From her early work with the biomedical community, she understood all too well the difficulty in accessing and curating high-quality medical data to train ML models. She addressed these twin challenges head on, leveraging Amazon Elastic Compute Cloud (EC2) and AWS ML deployment tools via her Amazon Research Award to launch Therapeutics Data Commons (TDC), an international initiative to access and evaluate AI capability across therapeutic modalities and stages of discovery.

At its core, TDC is a collection of open-source data sets and state-of-the-art ML models focused on drug discovery and development, accompanied by a broader ecosystem of resources and tools that include benchmarking and leader boards for cutting-edge ML models.

“It’s a meeting point between biomedical and biochemical researchers, and machine learning scientists,” says Zitnik. “It’s a thriving community.”

Related content
For the first time, the largest genomic sequencing repository in the Americas will be natively accessible on AWS through the Open Data Sponsorship Program.

TDC is the largest open-source platform of its kind in the world. Zitnik runs it with collaborating institutions including MIT, Stanford University, Georgia Institute of Technology, Cornell University, University of Illinois Urbana-Champaign, and Carnegie Mellon University, and with additional support from the pharmaceutical industry and tech companies. TDC covers the entire process of drug discovery and development, from identifying potentially therapeutic molecules to the optimizing and planning of laboratory experiments.

The platform holds data from anonymized electronic health records, medical imaging, genomics, clinical trials data, and lots more. Biomedical researchers can use TDC’s data, or bring their own data and challenges, and collaborate with ML scientists to increase the speed of drug discovery while also reducing the otherwise enormous cost of bringing new drugs to market. It has already been used by more than 200,000 scientists worldwide, says Zitnik.

Help for rare diseases

Zitnik is also keen to use her technology to help patients and clinicians working on rare diseases. There are over 7,000 rare diseases in the world, says Zitnik. Each of them has a small number of known cases, but collectively they affect many people. Could AI help here?

To develop a diagnostic model for a common disease typically requires data from thousands of patients, labelled with that diagnosis. For rare diseases, that labelled patient data simply doesn’t exist. “This problem cannot be solved by throwing more money at it,” says Zitnik. “It requires a new way of thinking.”

Instead, Zitnik and her team, which includes postdoctoral fellow Emily Alsentzer and graduate researcher Michelle Li, are incorporating medical principles and prior scientific knowledge about biological interactions, chemistry, genetics, patient symptoms, and drug interactions into the neural architecture of their models.

“This allows us to train sophisticated deep learning models using very little amounts of labelled patient data, and sometimes no patient data at all,” says Zitnik.

A collaboration with a Harvard-led study called the Undiagnosed Diseases Network (UDN) has shown that the approach works. Someone with a rare genetic disease that has defied diagnosis at the local level can be referred to the UDN’s network of clinical and research experts across 12 U.S. clinical sites. A diagnosis can resolve the burden of uncertainty for the patient and hopefully unlock the possibility of treatments. Of the 2,500 participants so far accepted into the UDN study, 627 have been successfully diagnosed — each case a hard-fought win.

Related content
Watch the KDD 2020 talk by Taha Kass-Hout, director of machine learning, AWS Health AI.

When Zitnik’s team applied their model to the medical data of 465 of these patients — a data set that excluded their actual diagnosis — the results were striking. The model was asked to predict for each patient the genes mostly likely responsible for their illness. For three-quarters of the patients, the disease-causing gene was in the model’s top five predictions.

“The next stage is to use it in real-world settings to assist the clinical teams in the evaluation of undiagnosed patients,” says Zitnik.

The tool has drawn considerable interest from the medical community, says Zitnik. She is planning pilot studies with clinics in Boston and Israel that are not part of the UDN to further evaluate the model as a diagnostic recommendation tool for new cases. Zitnik is also in discussions with several patient-led foundations centered around individual rare diseases, with the goal of providing them with a suite of user-friendly tools.

That is something Amazon Web Services supports. “When we are looking to deploy a model in biomedical or clinical settings, we use SageMaker,” Zitnik says. Amazon SageMaker can be used to turn ML models into standalone tools for public release, for example, or to place algorithms in cloud-based containers for sharing them with collaborators.

The power of the cloud for biomedical data

Cloud computing more broadly is critical to the work in the Zitnik lab.

“We need to train our models repeatedly on many different kinds of health data, to make sure they perform well across diverse patient populations, diverse chemical structures and so on, even if the input data is relatively messy,” says Zitnik. Her Amazon Research Award provided AWS credits for access to the high-powered parallel computing required by these training-hungry models.

In addition to the launch of TDC, Zitnik’s Amazon award supported discrete research projects. In 2021, as the COVID-19 pandemic raged around the world, Zitnik and her team wanted to know how effective AI methods could be at identifying existing drugs that could be repurposed to treat emerging pathogens. Identifying drugs already on the market or in late-stage clinical trials can save many years, and potentially billions of dollars, compared with developing a drug from scratch.

Related content
A knowledge graph linking research papers, authors, and topics should make it easier for researchers fighting COVID-19 to discover relevant information.

Zitnik’s team first trained a geometric deep learning model on the human interactome — the complete network of physical interactions between proteins in the human body. These networks tell us what parts of human cells’ machinery are affected by a given drug molecule.

Once the model was trained, they fed it data on over 7,500 existing drugs and their mechanisms of action. Of these drugs, the model predicted and ranked 6,340 candidate drugs. Biomedical researchers screened the top 918 suggestions on cells infected with COVID-19 and found 77 drugs that had a strong or weak effect on the virus. They used these results to fine-tune the model’s predictions, before finally screening the top-ranked drugs in human cells. They identified six drugs that reduced viral infection. Among these, four could, in principle, be repurposed to treat COVID-19.

“It’s an exciting example of how AI can accelerate drug discovery and development. We were able to compress the timeline of this kind of research — from data collection to final models and predictions being tested in the lab — from years to months,” says Zitnik. Three months, in this case.

This is impressive in itself, but the experiment also revealed another aspect of the power of AI approaches.

Cascading network effects

A well-established strategy for drug discovery is to exploit molecular docking. If an infecting pathogen needs to dock with a particular protein on the surface of human cells to proliferate, a therapeutic molecule that docks with that protein instead could block the action of the pathogen. Indeed, Zitnik’s model did identify one drug that bound to the same proteins targeted by SARS-CoV-2. But here’s the kicker — it also found 76 drugs that successfully reduced viral infection through indirect systemic effects.

Related content
Politecnico di Milano professor Stefano Ceri is working to integrate genomic datasets into a single accessible system with the support of an Amazon Machine Learning Research Award.

“One of the biggest outcomes of the work was the discovery of this group of drugs that seem to work through cascading network effects, indirectly impacting the proteins the virus attacks,” says Zitnik. “We call these network drugs. Without algorithms such as graph neural networks, which can make indirect observations and inferences using principles grounded in biomedical knowledge, we would not be able to identify such drugs.”

This new way to approach discovery, powered by biomedical AI, excites Zitnik for the future. She sees the potential for such tools to generate more accurate scientific hypotheses tailored to individual cells, diseases, and patients, and to help bridge the gap between laboratory and clinical settings:

“I can't wait to see how these developments will continue to shape our world.”

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.. Come join the team that owns the technology behind AWS People Planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners. A Sr. Data Scientist in the AWS Workforce Planning team, will partner with Software Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve extreme-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air team! We're looking for an outstanding Applied Scientist with either some background or strong interest in building simulation tools and algorithms for orchestration of a fleet of autonomous delivery drones. Managing a large number of concurrent autonomous drone flights that share airspace with other autonomous or manned aircrafts is a challenging problem. Be part of the team building simulation tools and algorithms to solve this at scale. This role will contribute to a portfolio of simulation tools managing concurrent airspace traffic for aviation systems. The ideal candidate is comfortable with a degree of risk taking and ambiguity and able to build consensus on the critical path. If you enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before, Prime Air could be the place for you. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver and directly impact Amazon’s customer’s worldwide. About the team Prime air has ambitious goals to offer its service to an increasing number of customers and enabling a large number of concurrent flights is central to achieving this. To this end, the air traffic management team is building algorithms, tools and services for orchestration of prime air's autonomous drone fleet.
CA, ON, Toronto
Amazon Games recherche un.e Chercheuse, Chercheur scientifique pour créer de nouvelles approches révolutionnaires en ML, RL et IA Générative qui raviront les joueuses et les joueurs. Dans ce rôle, vous collaborerez avec les Scientifiques en apprentissage automatique d'Amazon Games et Amazon Science pour imaginer et développer des outils, des processus et des fonctionnalités alimentés par l'IA générative à travers Amazon Games. Chez Amazon Games, notre ambition est de créer d’expériences inédites et audacieuses qui rassemblent et cultivent les communautés de joueurs et de joueuses. Notre équipe d'experts de l'industrie développe des jeux multijoueurs AAA et des propriétés intellectuelles originales, avec des équipes à Seattle, Orange County, San Diego, Montréal et Bucarest. À travers nos divisions - Studios, Publishing et Prime Gaming et en collaboration avec des partenaires externes, nous développons, publions et livrons des jeux et des expériences de contenu exceptionnelles pour les joueurs et joueuses. /// Amazon Games is seeking a highly effective Research Scientist to create new ground breaking ML, RL and Generative AI (Gen AI) approaches that delights player. In this role, you will collaborate with Amazon Science and Amazon Games Applied Scientists to research and develop generative AI-powered tools, pipelines and features across Amazon Games. At Amazon Games, our ambition is to create bold new experiences that foster community in and around our games. Our team of game industry veterans develops AAA multiplayer games and original IPs, with teams in Seattle, Orange County, San Diego, Montreal, and Bucharest. Amazon Games, through its Studios, Publishing, and Prime Gaming divisions collaborating with external partners, aims to develop, publish, and deliver compelling AAA games and content experiences for gamers to discover. Key job responsibilities Responsabilités - Rechercher, implémenter et produire des services d'IA/ML ambitieux et complexes pour Amazon Games. - Collaborer avec les équipes d'ingénieries, de conceptions et artistiques pour concevoir, développer et intégrer de nouveaux outils d'IA générative dans les flux de travail des équipes de développement. - Identifier et résoudre de manière proactive les problèmes qui affectent la qualité de vie des joueuses et les joueurs, des opérations et d’autres développeuses et développeurs. - Rester à jour et analyser les dernières avancées en technologie d'IA générative, et améliorer continuellement les fonctionnalités des produits lorsque des améliorations significatives en termes de coût, d'évolutivité, de qualité ou de fonctionnalité peuvent être réalisées. /// Responsibilities - Research, implement, and productionize ambitious and complex AI/ML services for Amazon Games. - Collaborate with game team engineers, designers and artists to design, develop, and integrate new generative AI tools into developer workflows. - Proactively identify and solve problems that affect the quality of life for players, operations, and other developers. - Stay up to date with and analyze the latest advancements in generative AI technology, and continuously improve product features where meaningful improvements in cost, scalability, quality, or functionality can be achieved. A day in the life Une journée type - Vous vous épanouissez dans un environnement collaboratif où vos décisions ont un impact et une influence significatifs. - Vous exprimer votre passion par la création d'expériences de jeu qui ravissent les joueurs et les joueuses. - Vous proposez d'excellents flux de travail, outils et innovations de jeu à vos collègues et aux équipes de développement et recherchez constamment l'amélioration. - Vous souhaitez faire partie de quelque chose d'excitant et unique dans l'écosystème du jeu. /// A day in the life - You thrive in a collaborative environment where your decisions have significant impact and influence. - You are passionate about building game experiences that delight players. - You deliver great workflows, tools, and game innovations to your fellow developers and constantly seek improvement. - You want to be part of something exciting and unique in the gaming ecosystem. About the team À propos de l'équipe L'équipe de recherche en IA d'Amazon Games Studio se concentre sur l'innovation en intelligence artificielle dans le domaine du jeu vidéo. Notre équipe hautement qualifiée et multidisciplinaire travaille sur l'apprentissage automatique, l'apprentissage par renforcement et l'IA générative pour réinventer le développement des jeux. Nous travaillons de près avec les équipes internes et nos studios partenaires pour donner vie à leur vision créative. Notre mission est d'utiliser l'IA de manière responsable pour transformer l'expérience de jeu, enrichir les récits, et fournir aux créateurs et créatrices des outils pratiques pour optimiser leurs chaînes de production. /// About the team The Amazon Games Studio AI Research team focuses on artificial intelligence innovation in gaming. Our highly skilled, multi-discipline team works across Machine Learning, Reinforcement Learning, and Generative AI to reimagine game development. We work closely with first-party game developers and partner studios to bring creative visions to life. Our mission is to use AI responsibly to transform gameplay experiences, enrich narratives, and provide creators with practical tools to optimize their production pipelines.