A city crew truck is seen driving down a flooded street in a downpour
Lise St. Denis, a research scientist at the University of Colorado’s Earth Lab, has spent the past half-decade figuring out how to find useful information on social media in the wake of natural disasters like the flooding seen here.
Mario Beauregard/Adobe

Finding critical information during disasters

Lise St. Denis, a research scientist at the University of Colorado, says social media can be useful for responders. Now she's helping them separate truly useful info from the noise.

Twitter, apart from being a place to catch up on niche topics and post personal takes on the latest news, can be a useful source of vital information during disasters.

Lise St. Denis, a research scientist at the University of Colorado’s Earth Lab, notes social media sites of all stripes can be useful in storms, but also in wildfires, floods, hurricanes, and other natural disasters — because fast, local information is essential in these situations. However, separating truly useful info from the noise is key, which is what St. Denis has been working on for the past half-decade.

“My big vision is that emergency response teams and communities impacted by disasters could get the best possible information out in real time so communities can be optimally informed about what's happening,” she says.

This kind of work requires a marriage of creative thinking and technology, something St. Denis, a 2019 AWS Machine Learning Research Award recipient, has pursued since the beginning of her career.

Lise St. Denis is seen wearing a mask and standing, on the left, while teaching a recent graduate seminar. There is a display screen behind her and two students, also masked, are seen sitting.
Lise St. Denis is seen standing while teaching a recent graduate seminar. After earning her PhD at the University of Colorado in 2016, St. Denis stayed on and is now a research scientist at Earth Lab
Courtesy of Lise St. Denis

At least as far back as college, St. Denis has had a variety of interests she took seriously, despite their seeming disparity. Her undergrad degrees from Colorado State University are in fine arts and computer science. That brought her to illustration and software engineering in her early working life, first at Hewlett Packard. HP supported her graduate work in human factors engineering at the University of Idaho.

She took a break when she had children in the early 2000s, and when she was ready to return to the workforce, she realized she wanted to refine her skills. “I still had a lot of the same interests, but with a different life perspective — I was older. I wanted to do something that I felt like I was making a difference,” says St. Denis. So she went back to graduate school in 2011 initially for a masters in computer science, which led her to the University of Colorado where she discovered Project EPIC (Empowering the Public with Information in Crisis) where she decided to pursue an interdisciplinary doctorate in crisis informatics.

As part of the work for her degree, she met a group of emergency responders, became fascinated by their work, and set out to learn more. She realized that one big challenge they faced was getting the word out to the public. Could, she wondered, social media sites help gather and distribute information?

So when she heard about a plan in New Mexico to adapt the idea of digital volunteerism to emergency risk response — the volunteers in this case would be emergency responders — she went to learn from them.

At the time, social media wasn’t widely embraced within the emergency response field; St. Denis even knew government officials who risked their jobs using social media at work. “A lot of emergency response organizations just saw social media, not as useful, but as more of a hotbed for misinformation and rumor,” says St. Denis.

Even in light of that, some emergency managers remained interested: “As social media gained popularity, they knew this is where they needed to provide updates, engage with a growing audience, and look for breaking information,” recalls St. Denis.

“They formed this network of teams that were called Virtual Operational Support Teams. These teams are known ahead of time and activated through formal emergency protocols and procedures. The first emergency trial of the concept was during the 2011 Shadow Lake Fire in Eastern Oregon. I ended up studying the innovations of this network of teams, and I worked within this community, alongside them, to understand what they were doing,” she explained.

Their work made sense to St. Denis, and so, instead of getting that master’s in computer science, she ended up using what she had learned in New Mexico as a basis for her cross-disciplinary PhD, which included computer science, but also incorporated classes in communication and sociology of disaster.

In 2014, St. Denis was asked to bring her reporting and analysis social media skills to the Carlton Complex fire in Eastern Washington. That fire burned through several communities with a high number of structures lost and very short evacuation windows. Unable to keep up with the speed of the fire’s impact, locals had no way to get their questions answered and there was, understandably, a lot of frustration.

“That convinced me that there had to be a better strategy for filtering and getting to the most relevant information needed during these events,” she says.

She was also wrangling data and doing analysis, and consolidating that information for the teams she was supporting. As part of her research, St. Denis was a part of close to 100 emergency response activations. “I studied the integration of social media into emergency response through virtual teams,” she explains. “And I kept asking myself, ‘What does it mean to integrate them?’”

Fast forward to today and she’s still researching that basic question. After earning her PhD at the University of Colorado in 2016, St. Denis stayed on at the university and is now a research scientist at Earth Lab. “We have all this existing information from all these different sources, and we want to do a better job of making it available so scientists can leverage it and make use of it for hazards analysis.”

Thus far, Twitter has shown the most promise for what St. Denis hopes to implement. The idea is that an emergency manager would receive a live stream of truly useful content, including selected tweets from reliable sources. “The managers could keep an eye on that as part of their emergency management response,” says St. Denis.

This is extremely practical, real-world information, that can help save lives because it is personalized, says St. Denis. The information is coming from community members who are directly impacted by these disasters. “It's not the media coverage or the broad outside information,” says St. Denis. “It contains new information such as what roads are passable or where fuel outages exist” or where information gaps exist such as, ‘I don't know where to evacuate my livestock,’ or ‘I need to know who has gas,’ or ‘Is my water supply safe to drink?’”

And while her research hasn’t yet translated into an actual tool for emergencies, St. Denis sees the light around the corner. She recently became part of the Pandemic Hyper-Accelerator for Science and Technology (PHAST). “As part of the PHAST program I have been paired with skilled entrepreneurs who are helping me to look at my problem from a systematic, opportunity-driven perspective,” she explains. “We’ve been interviewing emergency response and crisis response professionals across different contexts to understand specifics about the tools they are using, as well as the specific values of or consequences for information when it is found or not found.”

Utilizing machine learning

St. Denis first realized she would need to utilize machine learning when studying data from the Carlton Complex fire. “I realized that I had some intuition for how I could take the noise off the top to get to the information that I wanted. But the only way that was going to matter is if I could do that in near real time — which would require machine learning,” she says. So she applied for an AWS Machine Learning Research Award and received it in 2019.

She and her team used AWS Lambda and AWS Fargate to query the Twitter API for relevant tweets, and stored the raw data in Amazon S3. St. Denis also used standard machine learning libraries to build her prototype because she wanted everything to be open source. “We're hoping, as we move forward, to move into more sophisticated data collection and AWS tools,” she says.

St. Denis and her team have published two papers on the design of the work done so far, and proved that the prototype they’ve built works equally well across multiple types of hazards. They’ve even used it for work they did examining US-based public response to stay-at-home orders at the onset of the COVID-19 pandemic.

“I have spent over a decade working with some of the most innovative responders in the field, but fundamentally nothing has changed in terms of tools,” she says. “I think that this social media-based tool has a lot of potential, and so it's been really exciting. Now that I have this starter funding, it could go pretty quickly.”

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
Are you passionate about leveraging your applied science skills to deliver actionable insights that impact daily business decisions? Do you thrive using causal inference, experimentation, and Machine Learning/AI to answer challenging product and customer behavior questions? Do you want to be a technical leader and build flexible and global solutions for complex financial, risk, and causal problems? If so, here is a great opportunity to consider! Amazon B2B Payments & Lending is seeking a Senior Applied Scientist who will combine their technical expertise with business intuition to generate critical insights that will set the strategic direction of the business. You will be a thought leader on the team, help set the team's strategic focus and roadmaps, and design and build systems/solutions that support financial products, working closely with business/product partners and engineers. You will utilize causal inference/experimentation/ML/AI methodologies, data and coding skills, problem solving and analytical skills, and excellent communication to deliver customer value. As a Senior Applied Scientist on our team, you'll play a pivotal role in uncovering actionable insights that shape the strategic direction of our products and services. You'll work closely with business stakeholders, data scientists, and engineers to tackle complex problems at the intersection of finance, risk modeling, and customer behavior. A day in the life - Collaborate with product, data, and engineering teams to identify key business and customer questions that can be answered through advanced analytics and machine learning - Design and build flexible, scalable solutions that leverage causal inference, experimentation, and applied ML/AI to provide critical insights that drive strategic decisions - Present analyses and recommendations to stakeholders, while also mentoring more junior data scientists and innovating on the team's capabilities About the team The Amazon B2B Payments & Lending team is a fast-paced, highly collaborative group focused on enabling seamless financial experiences for our business customers. We're building innovative solutions that leverage the power of data, AI, and automation to deliver frictionless payment processing, credit decisioning, and financial management tools. Our team culture is one of curiosity, creativity, and a relentless drive to delight our customers. We value bold thinking, data-driven decision making, and a willingness to experiment and learn. If you're passionate about using your technical expertise to drive meaningful business impact, this is an exciting opportunity to make a difference.