Image shows an autonomous surface vehicle used for bathymetric mapping and water quality monitoring
This autonomous surface vehicle used for bathymetric mapping and water quality monitoring is part of a project being pursued by researchers at the Vehicle Autonomy and Intelligence Lab (VAIL) at Indiana University Bloomington.
Courtesy of Lantao Liu

How Lantao Liu and his team are helping robots adapt to challenges

The AWS Machine Learning Research Award winner is working to develop methods and open-source libraries that can potentially benefit the artificial intelligence and robotics communities.

Lantao Liu and his team at the Vehicle Autonomy and Intelligence Lab (VAIL) at Indiana University Bloomington want to help robots get better at navigating through complex and sometimes changing environments, while also boosting their ability to assess and process data. This challenge has significant applications, particularly in the realm of environmental modeling. Liu and his team are working to develop autonomous and machine learning methods and open-source libraries that can potentially benefit both the artificial intelligence and robotics communities.

“Machine learning algorithms are increasingly being developed for robotics missions. Many critical autonomy components are data-driven, where the data comes from onboard sensors such as LiDAR, sonar, and cameras,” says Liu who also is an assistant professor within the university’s Department of Intelligent Systems Engineering in the Luddy School of Informatics, Computing, and Engineering.

Photo is of Lantao Liu, who leads the Vehicle Autonomy and Intelligence Lab at Indiana University Bloomington
Lantao Liu leads the Vehicle Autonomy and Intelligence Lab at Indiana University Bloomington.
Courtesy of Lantao Liu

“The robots typically have weak computational capacity due to their limited dimensions and payloads, yet they require online learning with data processed on the fly,” he adds. “Unfortunately, many methods for solving these tasks entail large computational costs that can be very challenging for the robots. The key challenges have been computational-theoretical due to the increased complexity of stochastic modeling, but also practical due to the synergy of integrating hardware and software systems as well as customizing algorithms on the robots.”

Liu’s 2019 Amazon Machine Learning Research Award allows VAIL to access and leverage Amazon’s cloud computing tools and services for thousands of hours, boosting their work on both machine learning and autonomous systems.

“My lab works on various decision-making problems for different types of robots including aerial, ground, and aquatic vehicles. Our objective is to develop methodologies for autonomous robots to enhance their autonomy and intelligence in environmental sensing and modeling, search and rescue, among other applications of societal importance,” explains Liu.

Environmental sensing, modeling, and monitoring

One project being pursued by VAIL researchers involves a process that maps environmental attributes of interest, such as pollution in the water or air, by collecting corresponding measurement samples from different locations so that a “distribution map" (environment model) can be reconstructed.

“This mapping mechanism is also called environmental state estimation, a learning process where the parameters of an underlying environment model must be learned using streams of incoming sampling data collected by robots,” Liu explains.

“However, the environments can be dynamic, as can the associated environmental attributes to be mapped. A drawback to using robots is that the collection of samples requires a series of sequential, ordered, sampling operations (so data may not well represent the ground-truth map), and the entire sampling process is time consuming because the samples are typically spread over different spatial locations.

Environmental sensing, modeling, and monitoring using autonomous surface vehicles

“To provide a good estimate of the state of the environment at any time, the robot information-gathering sensing must be persistent to keep up with evolving environmental dynamics,” Liu explains. “One focus of our research has been developing principles that use data-driven methods to guide robots to learn the spatio-temporal and stochastic environment model, and utilize the learned model for path planning and decision-making solutions. This, in turn, benefits future environmental exploration and exploitation for subsequent modeling and monitoring.”

The VAIL team has been developing methods and software that can accurately characterize the spatiotemporal environment by designing a non-stationary modeling framework based on a variant of Gaussian processes (GPs).

“The map will not be the same everywhere,” says Liu. “There are locations on the map that vary more rapidly than others, and we need to accurately model both rapidly and slowly changing parts. It is even more challenging when the underlying map is dynamic, such as when we’re mapping pollution dispersion.

“In addition,” he explains, “the model computation must be fast for in-the-moment decisions. However, sensing data is continuously received, and the accumulated data quickly overwhelms the robots’ computing resources. To boost the learning performance, our researchers recently developed an adaptive learning approach where the key idea is a sparse approximation mechanism that incrementally incorporates the new incoming data with a learned model supported by ‘summarized old data.”

Robotic anomaly detection

In a related project, the lab has been developing a generic robotic anomaly detection framework, motivated by field experiments.

“Commonly, robots in the field encounter sensing and behavioral anomalies,” Liu explains. “For example, one of the thrusters of the autonomous surface vehicle (ASV) might malfunction in operation, resulting in a forward motion becoming a turning motion. Or the ASV might get stuck in aquatic plants or other underwater obstacles, which are difficult to perceive using cameras or LiDARs. The inertial measurement unit (IMU) can be sensitive to external disturbances such as magnetic fields and provide drifting readings. Surrounding objects, such as a tall tree near the shore, might block the GPS signals, which leads to inaccurate localization. Sonar data can also be affected by dynamic underwater objects or environmental disturbances.

“Resilient and adaptive robotic systems require cognitive capabilities to avoid anomalies and recover and learn from failures with minimal human intervention,” Liu adds. “Equipping robots with the self-examination ability to detect sensing and behavioral faults is an essential step. The intuitive idea of anomaly detection is to develop some concept of normality and treat the observations that deviate considerably from that as anomalies.

“It is difficult, if not impossible, to handcraft a model representing the expected behaviors of different kinds of robots in various applications,” Liu explains. “The framework learns the concept of normality via deep representation learning and graph neural networks. We train the framework using contrastive learning in a semi-supervised manner that utilizes the information in a large amount of unlabeled data and, optionally, a small amount of labeled data. During the development of this framework, the AWS EC2 instances have drastically accelerated the prototyping, training, and testing processes. We are currently finalizing this framework and will open-source software.

“Hopefully,” he adds, “it will also benefit the robotics and machine learning communities at large.”

Off-road autonomy

The AWS Machine Learning Research Award also helps VAIL research off-road autonomy.

“An important challenge is the stochastic modeling of unexpected robot behaviors,” he explains. “Basically, the robots operating in real-world complex environments need to reason about the long-term results of their physical interactions with the environment, but due to the high complexity of the real world, it is generally impossible to predict future events in an accurate manner.

“For example,” says Liu, “the effect of uneven road conditions or various disturbances on the robot’s motion is hard to model (or learn from data) precisely. It is even more challenging to model the interaction between the robot and the environment, especially when the environment is dynamic. Other representative scenarios include drones flying with strong winds or submarines moving under ocean currents, where air and water flows vary significantly in both space and time.

“Thus, it is necessary for the robots to consider these epistemic uncertainties caused by a lack of precise modeling of the environment while making decisions,” he explains. “We use Markov decision process as a basis to model autonomous decision-making under uncertainty problems. The solution to these problems is a closed-loop policy that maximizes a long-term goal and satisfies the safety constraints under a probabilistic interaction model between the robot and the environment. In principle, the resulting policy can generate a sequence of motor commands that complete the task assigned by a human, given that the probabilistic model can well describe the uncertainty of the world, and the computational method can allow the robot to calculate the policy within a reasonable amount of time.

“However,” Liu continues, “many real-world problems are non-trivial, and obtaining the required probabilistic model of the world is generally impossible. Our research focuses on solving these two challenges by developing novel methods and leveraging the strong computational power of GPUs. Our current focus is on addressing the computational part of the challenge by developing two planning algorithms that allow the robot to reason about its continuous motion on complicated terrain surfaces based on the kernel method (mesh-free) and finite-element method (mesh-based). Both methods leverage a set of discrete elements to represent the value function over the continuous space. The computation over the discrete parts can be parallelized, which allows our robot to reason and compute optimal policies in real-time to navigate through complicated terrains safely and efficiently.”

VAIL researchers have been working on using sampling methods to optimize over a class of parameterized policies.

robotdecisionmaking.gif
Lantao Liu and his team used AWS cloud computing services to speed up computation and analyses of robot decision-making policies in a simulated scenario.

“To do so, we first need to sample a large number of robot trajectories under the current policy, which can be computed quickly by the parallel architecture of Nvidia GPU CUDA cores,” Liu explains. “They use the gradient-based method for optimization of policy parameters: the policy is updated by computing the policy parameter gradients based on the sampled trajectories. The gradient computation and policy update involve large matrix operations, which can also be parallelized by GPUs for real-time solutions. They leverage AWS computation for this task.”

Navigable space segmentation for navigation

Liu notes that the AWS resources have also been very useful for the team’s visual autonomy research. Visual information has become increasingly important for robotic autonomy as it can provide rich information about surrounding environments, and VAIL’s visual data processing capability has been significantly improved due to the breakthrough on deep neural networks (DNNs). To develop deep approaches to process the vision perception, the team needs to develop models with complicated learning architectures, huge volumes of data, as well as various training strategies.

“A crucial capability for mobile robots to navigate in unknown environments is to construct obstacle-free space where the robot could move without collision,” Liu explains. “Roboticists have been developing methods for detecting such free space with the ray tracing of LiDAR beams to build occupancy maps in 2D or 3D space. Mapping methods with LiDAR require processing of large point cloud data, especially when a high-resolution LiDAR is used. As a much less expensive alternative, cameras have also been widely used for free space detection by leveraging DNNs to perform multi-class or binary-class segmentation of images.

Navigable space construction for robot visual navigation

“However,” he adds, “most existing DNN-based methods are built on a supervised-learning paradigm and rely on annotated datasets. The datasets usually contain a large amount of pixel-level annotated segmented images, which are prohibitively expensive and time-consuming to obtain for robotic applications in outdoor environments. To overcome limitations of fully supervised learning, we have been developing a new deep model based on variational auto-encoders. We target a representation learning-based framework to enable robots to learn navigable space segmentation in an unsupervised manner, with the aim of learning a polyline representation that compactly outlines the desired navigable space boundary. This is different from prevalent segmentation techniques which heavily rely on supervised learning strategies and typically demand immense pixel-level annotated images.

“We trained our model with the data from public datasets using GPUs,” Liu explains. “The large number of computing cores and memory space on AWS have enabled us to train our model fast and with high efficacy. This is crucial as it allows us to test and redesign models rapidly and provides great convenience to deploy the trained model to the robot systems.

“We then train our model with a small set of collected unlabeled images in real mission environments,” Liu adds. “Early testing shows that our model is able to detect navigable space in real time with high accuracy. “The computational resources provided by Amazon have greatly accelerated our design process.”

Research areas

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.