This image is overlaid with graphics and labels showing an example of instance segmentation as it applies to people eating at a barbecue, there are labels for person, bowl, cup, and knife
Object instance segmentation, a research field embraced by ARA recipient Yong Jae Lee, is the ability of a CV model to not only detect that there are objects in an image, but also to accurately locate and classify each object of interest, such as a person, bowl, cup, or knife.
Courtesy of Yong Jae Lee

How Yong Jae Lee is advancing the cutting edge of computer vision research

University of Wisconsin-Madison associate professor and Amazon Research Award recipient has authored a series of pioneering papers on real-time object instance segmentation.

Making sense of our kaleidoscopic visual world has been a decades-long grand challenge for computer scientists. That’s because there’s so much more to vision than mere seeing. To make the most out of machines, and ultimately have them move usefully and safely among us, they must understand what is happening around them with a superhuman degree of confidence.

The knowledge humans bring to every scene we encounter is what imbues that scene with meaning and enables us to respond appropriately. In the early days of computer vision (CV), artificial intelligence systems could only learn to discern via training on huge numbers of example images painstakingly annotated by humans — a process known as supervised learning.

Yong Jae Lee, associate professor at the University of Wisconsin-Madison, is seen standing outside on a sunny day, smiling into the camera -- there are trees and plants in the background
Yong Jae Lee, associate professor at the University of Wisconsin-Madison, received a 2019 ARA award for his research into real-time object instance segmentation.
Courtesy of Yong Jae Lee

When electrical engineering undergrad Yong Jae Lee first got hooked on the CV challenge, about 15 years ago, supervised learning reigned supreme. Back then, to teach a CV system how to spot a cat, you had to show it thousands of pictures of cats, with a box painstakingly drawn around each feline and labelled “cat”.

In this way, it could learn the constellation of features that makes felines uniquely identifiable. The idea that a CV system could learn to pick out the many important features of the visual world with little or no help from pre-labelled data felt so distant and difficult, even attempting it felt borderline pointless to many in the field.

Computer vision and the natural world
Amazon Machine Learning Research Award recipient utilizes a combination of people and machine learning models to illuminate the planet's incredible biodiversity.

But Lee, now an associate professor at the University of Wisconsin-Madison, felt strongly even back then that the future of CV lay in unsupervised, or weakly supervised learning.

The idea for this form of machine learning (ML) is that a CV model takes in large amounts of largely unlabelled images and works out for itself how to distinguish between many different classes of objects contained within them, from cats, dogs and fleas, to people, cars and trees.

Computer vision at Amazon
Why multimodal identification is a crucial step in automating item identification at Amazon scale.

“Back then, unsupervised learning was not popular, but I had no doubt it was the right problem to work on,” says Lee. “Now, I think almost the entire community believes in this direction. Huge progress is being made.”

This shift towards unsupervised (aka self-supervised) learning was brought about by the deep learning revolution, says Lee. In this paradigm, ML algorithms have been developed that can extract pertinent information from enormous amounts of raw, unlabelled data. This learning has been likened to how babies learn about the world, albeit on digital timescales.

The blistering rate of success of deep learning means the content of Lee’s graduate teaching evolves from one semester to the next.

“The state of the art this month will no longer be so next month,” he says. “There are frequent surprises, and paradigm shifts every few years. It’s a lot to navigate, but an exciting time for students.”

This image is overlaid with graphics and labels showing an example of instance segmentation as it applies to cars and trucks on a road, there are cones and there is a person, also labeled, in the foreground directing traffic
With instance segmentation, the model differentiates between objects of the same class, eg cars or trucks, by clearly segmenting each “instance” of that class of object.
Courtesy of Yong Jae Lee

When he’s not teaching, Lee is pushing the boundaries of both supervised and self-supervised approaches to CV. In 2019 he received an Amazon Machine Learning Research Award (now known as Amazon Research Awards), in part to support a series of pioneering papers on real-time object instance segmentation.

Object instance segmentation goes a lot further than visual object detection: it is the ability of a CV model to not only detect that there are objects somewhere in an image, but also to accurately locate and classify each object of interest — be that a chair, human, or plant — and delineate its visual boundary within the image.

With instance segmentation, not only is every pixel in an image attributed to a class of object, the model also differentiates between two objects of the same class by clearly segmenting each “instance” of that class of object.

The challenge in 2019: although this instance segmentation task could be done to a high standard when applied to individual images, no system could yet hit high-accuracy benchmarks when applied to real-time streaming video (defined as 30 frames per second or above).

Yong Jae Lee at CVPR 2019

It is important for CV systems to comprehend visual scenes at speed because a range of burgeoning technologies depend on such an ability, from driverless cars to autonomous warehouse robots.

Lee, then at the University of California, Davis, and his students Daniel Bolya, Chong Zhou, and Fanyi Xiao, not only developed the first model to attain such accuracy at speed, but also managed achieve it by training their model on just one GPU.

Their supervised system, called YOLACT (You Only Look At CoefficienTs), was lean and mean. It was fast because the researchers had developed a novel way to run aspects of the instance segmentation task in parallel rather than relying on slower, sequential processing. YOLACT won the Most Innovative Award at the COCO Object Detection Challenge at the International Conference on Computer Vision in 2019.

Since then, Lee’s team has gone on to markedly improve the efficiency and performance of the system, and the latest version of YOLACT called YolactEdge (built with students Haotian Liu, Rafael Rivera-Soto, and Fanyi Xiao) can be carried in a device no bigger than your hand. And by making the YOLACT code available on GitHub, Lee has put the system into many people’s hands.

YOLACT: Real-Time Instance Segmentation [ICCV Trailer]

“It’s had a big impact. I know there are a lot of people using YOLACT, and at least one start-up,” says Lee. “This is not some intellectual exercise. We’re creating systems with real-world value. For me, that’s a tremendously exciting feeling.”

In another branch of Lee’s work, also supported by his Amazon award, he pioneers new approaches to ML-based image generation. One example of another research first is MixNMatch, a minimal-supervision model that, when supplied with many real images, teaches itself to differentiate between a variety of important image attributes. By learning to distinguish between an object’s shape, pose, texture/colour and background, the system can employ fine-tuned control to generate new images with any desired combination of attributes.

mixnmatch.png
MixNMatch disentangles and encodes four factors from real images — object pose, shape, texture and background — and combines them to generate new images. Each image in the row of images is a combination of the attributes taken from the four images above it.

Lee continues to build on such work. This year he and his current and former students (Yang Xue, Yuheng Li, and Krishna Kumar Singh) unveiled GIRAFFE HD, a high-resolution generative model that is 3D aware.

This means it can, among other things, coherently rotate, move and scale foreground objects in a scene while independently generating the appropriate background. It is a design tool of enormous power with a near human-like grasp of how an image can be realistically, and seamlessly, transformed.

“As a user, you can tune different ‘knobs’ to change the generated image in highly controllable ways, such as the pose of objects and even the [virtual] camera elevation,” says Lee.

The depth of visual understanding required by such models is too big to depend on supervised learning, he adds.

Mitigating bias
Eliminating the need for annotation makes bias testing much more practical.

“If we want to create systems that can truly absorb all of the visual information that, say, a human will absorb in their lifetime, it's just not going to be feasible for us to curate that kind of dataset,” says Lee.

Nor is it feasible to develop such technology without significant computational resources, which is why Lee’s Amazon award included credits for Amazon Web Services.

“What was particularly beneficial to our lab was Amazon’s EC2 [Elastic Compute Cloud]. At crunch times, when we needed to run lots of different experiments, we could do that in parallel. The scalability and availability of machines on EC2 has been tremendously helpful for our research.”

While Lee is clearly energized by many aspects of vision research, he sees one looming downside: the massive influx of AI-generated art being published online.

“The state of the art now is to learn directly from internet data,” he says. “If that data becomes populated with lots of ML outputs, you’re not actually learning from so-called true knowledge, but instead learning from ‘fake’ information. It isn’t clear how this will affect the training of future models.”

But he remains optimistic about the rate of progress. The semantic understanding already being demonstrated by image-generation systems is surprising, he says.

“Take Dalle-2’s horse-rising astronaut. This kind of semantic concept doesn't really exist in the real world, right, but these systems can construct plausible images of exactly that.”

The takeaway lesson from this is that the power of data is hard to deny, says Lee. Even if the data is ‘noisy’, having enormous amounts of it allows ML models to develop a very deep understanding of the visual world, resulting in creative combinations of semantic concepts.

“Even for somebody working in this field, I still find it fascinating.”

What advice does Lee have for students looking to branch into his dynamic field?

“There is so much activity in this machine learning space, what's really important is to find the topics you're really passionate about, and get some hands-on experience,” says Lee. “Don't just read a paper and then presume you know what you need to know. The best way to learn is to download some cutting-edge open-source code and really play around with it. Have some fun!”

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.
US, VA, Arlington
he WWGST (Worldwide Grocery Stores Tech) teams are seeking a highly motivated Senior Research Scientist (Level 6) to join our team that is focused on building new technologies for grocery stores. We are a team of applied scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping such as Dash Cart or Self-CheckOut. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011 Key job responsibilities As a Senior Research Scientist, you will help solve a variety of technical challenges and mentor other junior scientists. You will be leader of the science team to resolve the hard problems. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.