This image is overlaid with graphics and labels showing an example of instance segmentation as it applies to people eating at a barbecue, there are labels for person, bowl, cup, and knife
Object instance segmentation, a research field embraced by ARA recipient Yong Jae Lee, is the ability of a CV model to not only detect that there are objects in an image, but also to accurately locate and classify each object of interest, such as a person, bowl, cup, or knife.
Courtesy of Yong Jae Lee

How Yong Jae Lee is advancing the cutting edge of computer vision research

University of Wisconsin-Madison associate professor and Amazon Research Award recipient has authored a series of pioneering papers on real-time object instance segmentation.

Making sense of our kaleidoscopic visual world has been a decades-long grand challenge for computer scientists. That’s because there’s so much more to vision than mere seeing. To make the most out of machines, and ultimately have them move usefully and safely among us, they must understand what is happening around them with a superhuman degree of confidence.

The knowledge humans bring to every scene we encounter is what imbues that scene with meaning and enables us to respond appropriately. In the early days of computer vision (CV), artificial intelligence systems could only learn to discern via training on huge numbers of example images painstakingly annotated by humans — a process known as supervised learning.

Yong Jae Lee, associate professor at the University of Wisconsin-Madison, is seen standing outside on a sunny day, smiling into the camera -- there are trees and plants in the background
Yong Jae Lee, associate professor at the University of Wisconsin-Madison, received a 2019 ARA award for his research into real-time object instance segmentation.
Courtesy of Yong Jae Lee

When electrical engineering undergrad Yong Jae Lee first got hooked on the CV challenge, about 15 years ago, supervised learning reigned supreme. Back then, to teach a CV system how to spot a cat, you had to show it thousands of pictures of cats, with a box painstakingly drawn around each feline and labelled “cat”.

In this way, it could learn the constellation of features that makes felines uniquely identifiable. The idea that a CV system could learn to pick out the many important features of the visual world with little or no help from pre-labelled data felt so distant and difficult, even attempting it felt borderline pointless to many in the field.

Computer vision and the natural world
Amazon Machine Learning Research Award recipient utilizes a combination of people and machine learning models to illuminate the planet's incredible biodiversity.

But Lee, now an associate professor at the University of Wisconsin-Madison, felt strongly even back then that the future of CV lay in unsupervised, or weakly supervised learning.

The idea for this form of machine learning (ML) is that a CV model takes in large amounts of largely unlabelled images and works out for itself how to distinguish between many different classes of objects contained within them, from cats, dogs and fleas, to people, cars and trees.

Computer vision at Amazon
Why multimodal identification is a crucial step in automating item identification at Amazon scale.

“Back then, unsupervised learning was not popular, but I had no doubt it was the right problem to work on,” says Lee. “Now, I think almost the entire community believes in this direction. Huge progress is being made.”

This shift towards unsupervised (aka self-supervised) learning was brought about by the deep learning revolution, says Lee. In this paradigm, ML algorithms have been developed that can extract pertinent information from enormous amounts of raw, unlabelled data. This learning has been likened to how babies learn about the world, albeit on digital timescales.

The blistering rate of success of deep learning means the content of Lee’s graduate teaching evolves from one semester to the next.

“The state of the art this month will no longer be so next month,” he says. “There are frequent surprises, and paradigm shifts every few years. It’s a lot to navigate, but an exciting time for students.”

This image is overlaid with graphics and labels showing an example of instance segmentation as it applies to cars and trucks on a road, there are cones and there is a person, also labeled, in the foreground directing traffic
With instance segmentation, the model differentiates between objects of the same class, eg cars or trucks, by clearly segmenting each “instance” of that class of object.
Courtesy of Yong Jae Lee

When he’s not teaching, Lee is pushing the boundaries of both supervised and self-supervised approaches to CV. In 2019 he received an Amazon Machine Learning Research Award (now known as Amazon Research Awards), in part to support a series of pioneering papers on real-time object instance segmentation.

Object instance segmentation goes a lot further than visual object detection: it is the ability of a CV model to not only detect that there are objects somewhere in an image, but also to accurately locate and classify each object of interest — be that a chair, human, or plant — and delineate its visual boundary within the image.

With instance segmentation, not only is every pixel in an image attributed to a class of object, the model also differentiates between two objects of the same class by clearly segmenting each “instance” of that class of object.

The challenge in 2019: although this instance segmentation task could be done to a high standard when applied to individual images, no system could yet hit high-accuracy benchmarks when applied to real-time streaming video (defined as 30 frames per second or above).

Yong Jae Lee at CVPR 2019

It is important for CV systems to comprehend visual scenes at speed because a range of burgeoning technologies depend on such an ability, from driverless cars to autonomous warehouse robots.

Lee, then at the University of California, Davis, and his students Daniel Bolya, Chong Zhou, and Fanyi Xiao, not only developed the first model to attain such accuracy at speed, but also managed achieve it by training their model on just one GPU.

Their supervised system, called YOLACT (You Only Look At CoefficienTs), was lean and mean. It was fast because the researchers had developed a novel way to run aspects of the instance segmentation task in parallel rather than relying on slower, sequential processing. YOLACT won the Most Innovative Award at the COCO Object Detection Challenge at the International Conference on Computer Vision in 2019.

Since then, Lee’s team has gone on to markedly improve the efficiency and performance of the system, and the latest version of YOLACT called YolactEdge (built with students Haotian Liu, Rafael Rivera-Soto, and Fanyi Xiao) can be carried in a device no bigger than your hand. And by making the YOLACT code available on GitHub, Lee has put the system into many people’s hands.

YOLACT: Real-Time Instance Segmentation [ICCV Trailer]

“It’s had a big impact. I know there are a lot of people using YOLACT, and at least one start-up,” says Lee. “This is not some intellectual exercise. We’re creating systems with real-world value. For me, that’s a tremendously exciting feeling.”

In another branch of Lee’s work, also supported by his Amazon award, he pioneers new approaches to ML-based image generation. One example of another research first is MixNMatch, a minimal-supervision model that, when supplied with many real images, teaches itself to differentiate between a variety of important image attributes. By learning to distinguish between an object’s shape, pose, texture/colour and background, the system can employ fine-tuned control to generate new images with any desired combination of attributes.

mixnmatch.png
MixNMatch disentangles and encodes four factors from real images — object pose, shape, texture and background — and combines them to generate new images. Each image in the row of images is a combination of the attributes taken from the four images above it.

Lee continues to build on such work. This year he and his current and former students (Yang Xue, Yuheng Li, and Krishna Kumar Singh) unveiled GIRAFFE HD, a high-resolution generative model that is 3D aware.

This means it can, among other things, coherently rotate, move and scale foreground objects in a scene while independently generating the appropriate background. It is a design tool of enormous power with a near human-like grasp of how an image can be realistically, and seamlessly, transformed.

“As a user, you can tune different ‘knobs’ to change the generated image in highly controllable ways, such as the pose of objects and even the [virtual] camera elevation,” says Lee.

The depth of visual understanding required by such models is too big to depend on supervised learning, he adds.

Mitigating bias
Eliminating the need for annotation makes bias testing much more practical.

“If we want to create systems that can truly absorb all of the visual information that, say, a human will absorb in their lifetime, it's just not going to be feasible for us to curate that kind of dataset,” says Lee.

Nor is it feasible to develop such technology without significant computational resources, which is why Lee’s Amazon award included credits for Amazon Web Services.

“What was particularly beneficial to our lab was Amazon’s EC2 [Elastic Compute Cloud]. At crunch times, when we needed to run lots of different experiments, we could do that in parallel. The scalability and availability of machines on EC2 has been tremendously helpful for our research.”

While Lee is clearly energized by many aspects of vision research, he sees one looming downside: the massive influx of AI-generated art being published online.

“The state of the art now is to learn directly from internet data,” he says. “If that data becomes populated with lots of ML outputs, you’re not actually learning from so-called true knowledge, but instead learning from ‘fake’ information. It isn’t clear how this will affect the training of future models.”

But he remains optimistic about the rate of progress. The semantic understanding already being demonstrated by image-generation systems is surprising, he says.

“Take Dalle-2’s horse-rising astronaut. This kind of semantic concept doesn't really exist in the real world, right, but these systems can construct plausible images of exactly that.”

The takeaway lesson from this is that the power of data is hard to deny, says Lee. Even if the data is ‘noisy’, having enormous amounts of it allows ML models to develop a very deep understanding of the visual world, resulting in creative combinations of semantic concepts.

“Even for somebody working in this field, I still find it fascinating.”

What advice does Lee have for students looking to branch into his dynamic field?

“There is so much activity in this machine learning space, what's really important is to find the topics you're really passionate about, and get some hands-on experience,” says Lee. “Don't just read a paper and then presume you know what you need to know. The best way to learn is to download some cutting-edge open-source code and really play around with it. Have some fun!”

Research areas

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.