blueswarm image.png
Swarm robotics involves scores of individual mobile robots that mimic the collective behavior demonstrated by animals. Certain robots, like the Bluebot pictured here, perform some of the same behaviors as a school of fish, such as aggregation, dispersion, and searching.
Courtesy of Radhika Nagpal, Harvard University

Schooling robots to behave like fish

Radhika Nagpal has created robots that can build towers without anyone in charge. Now she’s turned her focus to fulfillment center robots.

When Radhika Nagpal was starting graduate school in 1994, she and her future husband went snorkeling in the Caribbean. Nagpal, who grew up in a landlocked region of India, had never swum in the ocean before. It blew her away.

“The reef was super healthy and colorful, like being in a National Geographic television show,” she recalled. “As soon as I put my face in the water, this whole swarm of fish came towards me and then swerved to the right.”

Meet the Blueswarm
Blueswarm comprises seven identical miniature Bluebots that combine autonomous 3D multi-fin locomotion with 3D camera-based visual perception.

The fish fascinated her. As she watched, large schools of fish would suddenly stop or switch direction as if they were guided by a single mind. A series of questions occurred to her. How did they communicate with one another? What rules — think of them as algorithms — produced such complex group behaviors? What environmental prompts triggered their actions? And most importantly, what made collectives so much smarter and more successful than their individual members?

Radhika Nagpal is a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar
Radhika Nagpal is a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar.

Since then, Nagpal, a professor of computer science at Harvard University’s Wyss Institute for Biologically Inspired Engineering and an Amazon Scholar, has gone on to build swarming robots. Swarm robotics involves scores of individual mobile robots that mimic the collective behavior demonstrated by animals, e.g. how flocks of birds or schools of fish move together to achieve some end. The robots act as if they, too, were guided by a single mind, or, more precisely, a single computer. Yet they are not.

Instead, they follow a relatively simple set of behavioral rules. Without any external orders or directions, Nagpal’s swarms organize themselves to carry out surprisingly complex tasks, like spontaneously synchronizing their behavior, creating patterns, and even building a tower.

More recently, her lab developed swimming robots that performed some of the same behaviors as a school of fish, such as aggregation, dispersion, and searching. All without a leader.

Nagpal’s work demonstrates both how far we have come in creating self-organizing robot swarms that can perform tasks — and how far we still must go to emulate the complex tapestries woven by nature. It is a gap that Nagpal hopes to close by uncovering the secrets of swarm intelligence to make swarm robots far more useful.

Amorphous computing

The Caribbean fish sparked Nagpal’s imagination because she was already interested in distributed computing, where multiple computers collaborate to solve problems or transfer information without any single computer running the show. At MIT, where she had begun her PhD program, she was drawn to an offshoot of the field called amorphous computing. It investigates how limited, unreliable individuals — from cells to ants to fish — organize themselves to perform often complex tasks consistently without any hierarchies.

Amorphous computing was “hardware agnostic.” This meant that it sought rules that guided this behavior in both living organisms and computer systems. It asked, for example, how identical cells in an embryo form all the organs of an animal, how ants find the most direct route to food, or how fish coordinate their movements. By studying nature, these computer scientists hoped to build computer networks that operated on the same principles.

I got excited about how nature makes these complicated, distributed, mobile networks. Those multi-robot systems became a new direction of my research
Radhika Nagpal

After completing her doctoral work on self-folding materials inspired by how cells form tissues, Nagpal began teaching at Harvard. While there, she was visited by her friend James McLurkin, a pioneer in swarm robotics at MIT and iRobot.

“James is the one that got me into robot swarms by introducing me to all the things that ant and termite colonies do,” Nagpal said. “I got excited about how nature makes these complicated, distributed, mobile networks. James was developing that used similar principles to move around and work together. Those multi-robot systems became a new direction of my research.”

She was particularly taken by Namibian termites, which build large-scale nest mounds with multiple chambers and complex ventilation systems, often as high as 8 feet tall.

“As far as we know, there isn’t a blueprint or an a priori distribution between who’s doing the building and who is not. We know the queen does not set the agenda,” she explained. “These colonies start with hundreds of termites and expand their structure as they grow.”

The question fascinated her. “I have no idea how that works,” she said. “I mean, how do you create systems that are so adaptive?”

Finding the rules

Researchers have spent decades answering that question. One way, they found, is to act locally. Take, for example, a flock of geese at a pond. If one or two birds on the outside of the flock see a predator, they grow agitated and fly off, alerting the next nearest birds. The message percolates through flock. Once a certain number of birds have “voted” to fly off, the rest follow without any hesitation. They are not following a leader, only reacting only to the birds next to them.

How dynamic circle formation works

The same type of local behaviors could be used to make driverless vehicles safer. An autonomous vehicle, Nagpal explains, does not have to reason about all the other cars on the road, only the ones around it. By focusing on nearby vehicles, these distributed systems use less processing power without losing the ability to react to changes very quickly.

Such systems are highly scalable. “Instead of having to reason about everybody, your car only has to reason about its five neighbors,” Nagpal said. “I can make the system very large, but each individual’s reasoning space remains constant. That’s a traditional notion of scalable —the amount of processing per vehicle stays constant, but we’re allowed to increase the size of the system.”

Another key to swarm behavior involves embodied intelligence, the idea that brains interact with the world through bodies that can see, hear, touch, smell, and taste. This is a type of intelligence, too, Nagpal argues.

It’s almost like each individual fish acts like a distributed sensor. Instead of me doing all the work, somebody on the left can say, ‘Hey, I saw something.’ When the group divides the labor so that some of us look out for predators while the rest of us eat, it costs less in terms of energy and resources.
Radhika Nagpal

“When you think of an ant, there is not a concentrated set of neurons there,” she said, referring to the ant’s 20-microgram brain. “Instead, there is a huge amount of awareness in the body itself. I may wonder how an ant solves a problem, but I have to realize that somehow having a physical body full of sensors makes that easier. We do not really understand how to think about that still.”

Local actions, scalable behavior, and embodied intelligence are among the factors that make swarms successful. In fact, researchers have shown that the larger a school of fish, the more successful it is at evading predators, finding food, and not getting lost.

“It’s almost like each individual fish acts like a distributed sensor,” Nagpal said. “Instead of me doing all the work, somebody on the left can say, ‘Hey, I saw something.’ When the group divides the labor so that some of us look out for predators while the rest of us eat, it costs less in terms of energy and resources than trying to eat and look out for predators all by yourself.

“What’s really interesting about large insect colonies and fish schools is that they do really complicated things in a decentralized way, whereas people have a tendency to build hierarchies as soon as we have to work together,” she continued. “There is a cost to that, and if we try to do that with that with robots, we replicate the whole management structure and cost of a hierarchy.”

So Nagpal set out to build robots swarms that worked without top-down organization.

Animal behavior

A typical process in Nagpal’s group starts by identifying an interesting natural behavior and trying to discover the rules that generate those actions. Sometimes, they are surprisingly simple.

Take, for example, some behaviors exhibited by Nagpal’s colony of 1,000 interactive robots, each the size of quarter and each communicating with its nearest neighbors wirelessly. The robots will self-assemble into a simple line with a repeating color pattern based on only two rules: a motion rule that allows them to move around any stationary robots, and a pattern rule that tells them to take on the color of their two nearest neighbors.

Other combinations of simple rules spontaneously synchronize the blinking of robot lights, guide migrations, and get the robots to form the letter “K.”

Most impressively, Nagpal and her lab used a behavior found in termites, called stigmergy, to prompt self-organized robot swarms to build a tower. Stigmergy involves leaving a mark on the environment that triggers a specific behavior by another member of the group.

Stigmergy plays a role in how termites build their huge nests. One termite may sense that a spot would make a good place to build, so it puts down its equivalent of a mud brick. When a second termite comes along, the brick triggers it to place its brick there. As the number of bricks increase, the trigger grows stronger and other termites begin building pillars nearby. When they grow high enough, something triggers the termites to begin connecting them with roofs.

“The building environment has become a physical memory of what should happen next,” Nagpal said.

Nagpal used that type of structural memory to prompt her robotic swarm to build a ziggurat tower. The instructions included a motion rule about how to move through the tower and a pattern rule about where to place the blocks. She then built some small, block-carrying robots that built a smaller but no less impressive structure.

Her lab developed a compiler that could generate algorithms that would enable the robots to build specific types of structures — perhaps towers with minarets — by interacting with stigmergic physical memories. One day, algorithm-driven robots could move sandbags to shore up a levee in a hurricane or buttress a collapsed building. They could even monitor coral reefs, underwater infrastructure, and pipelines — if they could swim.

Schooling robofish

From the start, Nagpal wanted to build her own school of robotic fish, but the hardware was simply too clunky to make them practical. That changed with the advent of smartphones, with their low-cost, low-power processors, sensors, and batteries.

In 2018, she got her chance when she received an Amazon Machine Learning Research Award. This allowed her to build Blueswarm, a group of robotic fish that performed tasks like those she observed in the Caribbean years ago.

Each Bluebot is just four inches long, but it packs a small Raspberry Pi computer, two fish-eye cameras, and three blue LED lights. It also has a tail (caudal) fin for thrust, a dorsal fin to move up or down, and side fins (pectoral fins) to turn, stop, or swim backward.

Bluebots do not use Wi-Fi, GPS, or external cameras to communicate their positions without error. Instead, she wants to explore what behaviors are possible relying only on cameras and local perception of one’s mates.

How multi-behavior search works

Researchers, she explained, find it difficult to rely only upon local perception. It has been difficult to tackle fundamental questions, like how does a robot visually detect other members of the swarm, how they parse information, and what happens when one member moves in front of another. Limiting Bluebot sensing to local perception forces Nagpal and her team to think more deeply about what robots really need to know about their neighbors, especially when data is limited and imprecise. 

Bluebots can mimic several fish school behaviors by tracking LED lights on the neighboring fishbots around them. Using 3D cameras and simple algorithms, they estimate distance between lights on neighboring fish. (The closer they appear, the further the fish.)

Nagpal’s seven Bluebots form a circle (called milling) by turning right if there is a robot in front of them. If there is no robot, they turn left. After a few moments, the school will be swimming in a circle, a formation fish use to trap prey.

They can also search for a target flashing red light. First, the school disperses within the tank. When a Bluebot finds the red LED, it begins to flash its lights. This signals the nearest Bluebots to aggregate, followed by the rest. If a single robot had to conduct a similar search by itself, it would take significantly longer.

These behaviors are impressive for robots, but represent a small subset of fish school behaviors. They also take place in a static fish tank populated by only one school of robot fish. To go further, Nagpal wants to improve their sensors and perhaps use machine learning to discover new rules that could be combined to produce the aquatic equivalent of a tower.

In the end, though, Nagpal does not want to build a better fish. Instead, she wants to apply the lessons she has learned to real-world robots. She is doing just that during a sabbatical working at Amazon, which operates the largest fleet of robots — more than 200,000 units — in the world.

Practical uses

Nagpal had little previous experience working in industry, but she jumped at the chance to work with Amazon.

“There are few others with hundreds of robots moving around safely in a facility space,” she said. “And the opportunity to work on algorithms in a deployed system was very exciting."

There are few others [like Amazon] with hundreds of robots moving around safely in a facility space. And the opportunity to work on algorithms in a deployed system was very exciting.
Radhika Nagpal

“The other factor is that Amazon’s robots do a mix of centralized and decentralized decision-making," she continued. "The robots plan their own paths, but they also use the cloud to know more. That lets us ask: Is it better to know everything about all your neighbors all the time? Or is it better to only know about the neighbors that are closer to you?”

Her current focus is on sortation centers, where robots help route packages to shipping stations sorted by ZIP codes. Not surprisingly, robots setting out from multiple points to dozens of different locations require a degree of coordination. Amazon’s robots are already aware of other robots. If they see one, they will choose an alternate route. But what path should they take, Nagpal asks. She wants to make sure those robots are making the most effective possible choices.

Cities already manage this. They limit access to some roads, change speed limits, and add one-way streets. Computer networks do it as well, rerouting traffic when packet delivery slows down.

Some of those concepts, such as one-way travel lanes, also work in sortation centers. They could act as stigmergic signals to guide robot behavior. She also believes there might be a way to create simple swarm behaviors that enable robots to react to advanced data about incoming packages.

Once her sabbatical is over, Nagpal plans to return to the lab. She wants to keep working on her Bluebots, improving their vision, and turning them loose in environments that look more like the coral reef she went snorkeling in 25 years ago.

She is also dreaming of swarms of bigger robots for use in construction or trash collection.

“Maybe we could do what Amazon is doing, but do it outside,” she said. “We could have swarms of robots that actually do some sort of practical task. At Amazon, that task is delivery. But given Boston’s snowstorms, I think shoveling the sidewalks would be nice.”

Research areas

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.