Jeff Wilke, who was then Amazon's consumer worldwide CEO, delivering a keynote presentation at re:MARS 2019
Jeff Wilke, who was then Amazon's consumer worldwide CEO, delivering a keynote presentation at re:MARS 2019

The history of Amazon's recommendation algorithm

Collaborative filtering and beyond.

In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Collaborative filtering is the most common way to do product recommendation online. It’s “collaborative” because it predicts a given customer’s preferences on the basis of other customers’.

“There was already a lot of interest and work in it,” says Smith, now the leader of Amazon’s Weblab, which does A/B testing (structured testing of variant offerings) at scale to enable data-driven business decisions. “The world was focused on user-based collaborative filtering. A user comes to the website: What other users are like them? We sort of turned it on its head and found a different way of doing it that had a lot better scaling and quality characteristics for online recommendations.”

Related content
The story of a decade-plus long journey toward a unified forecasting model.

The better way was to base product recommendations not on similarities between customers but on correlations between products. With user-based collaborative filtering, a visitor to Amazon.com would be matched with other customers who had similar purchase histories, and those purchase histories would suggest recommendations for the visitor.

With item-to-item collaborative filtering, on the other hand, the recommendation algorithm would review the visitor’s recent purchase history and, for each purchase, pull up a list of related items. Items that showed up repeatedly across all the lists were candidates for recommendation to the visitor. But those candidates were given greater or lesser weight depending on how related they were to the visitor's prior purchases.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

That notion of relatedness is still derived from customers’ purchase histories: item B is related to item A if customers who buy A are unusually likely to buy B as well. But Amazon’s Personalization team found, empirically, that analyzing purchase histories at the item level yielded better recommendations than analyzing them at the customer level.

Family ties

Beyond improving recommendations, item-to-item collaborative filtering also offered significant computational advantages. Finding the group of customers whose purchase histories most closely resemble a given visitor’s would require comparing purchase histories across Amazon’s entire customer database. That would be prohibitively time consuming during a single site visit.

The history of Amazon's recommendation algorithm | Amazon Science

The alternatives are either to randomly sample other customers in real time and settle for the best matches found or to build a huge offline similarity index by comparing every customer to every other. Because Amazon customers’ purchase histories can change dramatically in the course of a single day, that index would have to be updated regularly. Even offline indexing presents a huge computational burden.

On average, however, a given product sold on the Amazom Store purchased by only a tiny subset of the site’s customers. That means that inspecting the recent-purchase histories of everyone who bought a given item requires far fewer lookups than identifying the customers who most resemble a given site visitor. Smith and his colleagues found that even with early-2000s technology, it was computationally feasible to produce an updated list of related items for every product on the Amazon site on a daily basis.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

The crucial question: how to measure relatedness. Simply counting how often purchasers of item A also bought item B wouldn’t do; that would make a few bestsellers like Harry Potter books and trash bags the top recommendations for every customer on every purchase.

Instead, the Amazon researchers used a relatedness metric based on differential probabilities: item B is related to item A if purchasers of A are more likely to buy B than the average Amazon customer is. The greater the difference in probability, the greater the items’ relatedness.

When Linden, Smith, and York published their paper in IEEE Internet Computing, their item-based recommendation algorithm had already been in use for six years. But it took several more years to identify and correct a fundamental flaw in the relatedness measure.

Getting the math right

The problem: the algorithm was systematically underestimating the baseline likelihood that someone who bought A would also buy B. Since a customer who buys a lot of products is more likely to buy A than a customer who buys few products, A buyers are, on average, heavier buyers than the typical Amazon customer. But because they’re heavy buyers, they’re also unusually likely to buy B.

Smith and his colleagues realized that it wasn’t enough to assess the increased likelihood of buying product B given the purchase of product A; they had to assess the increased likelihood of buying product B with any given purchase. That is, they discounted heavy buyers’ increased likelihood of buying B according to the heaviness of their buying.

“That was a large improvement to recommendations quality, when we got the math right,” Smith says.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

That was more than a decade ago. Since then, Amazon researchers have been investigating a wide variety of ways to make customer recommendations more useful: moving beyond collaborative filtering to factor in personal preferences such as brands or fashion styles; learning to time recommendations (you may want to order more diapers!); and learning to target recommendations to different users of the same account, among many other things.

In June 2019, during a keynote address at Amazon’s first re:MARS conference, Jeff Wilke, then the CEO of Amazon’s consumer division, highlighted one particular advance, in the algorithm for recommending movies to Amazon’s Prime Video customers. Amazon researchers’ innovations led to a twofold improvement in that algorithm’s performance, which Wilke described as a “once-in-a-decade leap”.

Entering the matrix

Recommendation is often modeled as a matrix completion problem. Imagine a huge grid, whose rows represent Prime Video customers and whose columns represent the movies in the Prime Video catalogue. If a customer has seen a particular movie, the corresponding cell in the grid contains a one; if not, it’s blank. The goal of matrix completion is to fill in the grid with the probabilities that any given customer will watch any given movie.

In 2014, Vijai Mohan’s team in the Personalization group — Avishkar Misra, Jane You, Rejith Joseph, Scott Le Grand, and Eric Nalisnick — was asked to design a new recommendation algorithm for Prime Video. At the time, the standard technique for generating personalized recommendations was matrix factorization, which identifies relatively small matrices that, multiplied together, will approximate a much larger matrix.

Related content
The switch to WebAssembly increases stability, speed.

Inspired by work done by Ruslan Salakhutdinov — then an assistant professor of computer science at the University of Toronto — Mohan’s team instead decided to apply deep neural networks to the problem of matrix completion.

The typical deep neural network contains thousands or even millions of simple processing nodes, arranged into layers. Data is fed into the nodes of the bottom layer, which process it and pass their results to the next layer, and so on; the output of the top layer represents the result of some computation.

Training the network consists of feeding it lots of sample inputs and outputs. During training, the network’s settings are constantly adjusted, until they minimize the average discrepancy between the top layer’s output and the target outputs in the training examples.

Reconstruction

Matrix completion methods commonly use a type of neural network called an autoencoder. The autoencoder is trained simply to output the same data it takes as input. But in-between the input and output layers is a bottleneck, a layer with relatively few nodes — in this case, only 100, versus tens of thousands of input and output nodes.

We had to go and doublecheck and re-run the experiments multiple times, I was giving a hard time to the scientists. I was saying, ‘You probably made a mistake.’
Vijai Mohan’

As a consequence, the network can’t just copy inputs directly to outputs; it must learn a general procedure for compressing and then re-expanding every example in the training set. The re-expansion will be imperfect: in the movie recommendation setting, the network will guess that customers have seen movies they haven’t. But when, for a given customer-movie pair, it guesses wrong with high confidence, that’s a good sign that the customer would be interested in that movie.

To benchmark the autoencoder’s performance, the researchers compared it to two baseline systems. One was the latest version of Smith and his colleagues’ collaborative-filtering algorithm. The other was a simple listing of the most popular movie rentals of the previous two weeks. “In the recommendations world, there’s a cardinal rule,” Mohan says. “If I know nothing about you, then the best things to recommend to you are the most popular things in the world.”

To their mild surprise, the item-to-item collaborative-filtering algorithm outperformed the autoencoder. But to their much greater surprise, so did the simple bestseller list. The autoencoder’s performance was “so bad that we had to go and doublecheck and re-run the experiments multiple times,” Mohan says. “I was giving a hard time to the scientists. I was saying, ‘You probably made a mistake.’”

Once they were sure the results were valid, however, they were quick to see why. In a vacuum, matrix completion may give the best overview of a particular customer’s tastes. But at any given time, most movie watchers will probably opt for recent releases over neglected classics in their preferred genres.

Neural network classifiers with time considerations
Amazon researchers found that using neural networks to generate movie recommendations worked much better when they sorted the input data chronologically and used it to predict future movie preferences over a short (one- to two-week) period.

So Mohan’s team re-framed the problem. They still used an autoencoder, but they trained it on movie-viewing data that had been sorted chronologically. During training, the autoencoder saw data on movies that customers had watched before some cutoff time. But it was evaluated on how well it predicted the movies they had watched in the two-week period after the cutoff time.

Because Prime Video’s Web interface displays six movie recommendations on the page associated with each title in its catalogue, the researchers evaluated their system on whether at least one of its top six recommendations for a given customer was in fact a movie that that customer watched in the two-week period after the cutoff date. By that measure, not only did the autoencoder outperform the bestseller list, but it also outperformed item-to-item collaborative filtering, two to one. As Wilke put it at re:MARS, “We had a winner.”

Whether any of the work that Amazon researchers are doing now will win test-of-time awards two decades hence remains to be seen. But Smith, Mohan, and their colleagues will continue to pursue new approaches to designing recommendation algorithms, in the hope of making Amazon.com that much more useful for customers.

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, NY, New York
Join us in a historic endeavor to make Generative AI accessible to the world with breakthrough research! The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists drives the innovation that enables external and internal SageMaker customers to train their next generation models on both GPU and Trainium instances. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.