Why a lack of diversity hurts economics—and economists

Four economists from diverse backgrounds explain why diversity is essential, and what needs to happen to achieve it.

Howard University’s recent announcement that it will host the American Economic Association Summer Training and Scholarship Program (AEASP) comes at a time when the economics profession finds itself grappling with a decades-old problem: a lack of diversity.

Four economists from diverse and underrepresented backgrounds, two each from Amazon and Howard University, recently shared their perspectives on the challenges and potential solutions.

Headshots of Gerald E. Daniels Jr., Jevay Grooms, Muthoni Ngatia and Henrique Romero.
From top left, clockwise: Gerald E. Daniels Jr., associate professor of economics and associate director of undergraduate studies in the Department of Economics at Howard; Jevay Grooms, assistant professor in the Department of Economics at Howard; Muthoni Ngatia, a current Amazon and former World Bank economist; and Henrique Romero, a senior economist with Amazon’s Supply Chain Optimization Technologies division.

Gerald E. Daniels Jr., associate professor of economics and associate director of undergraduate studies in the Department of Economics at Howard University; Jevay Grooms, assistant professor in the Department of Economics at Howard University; Muthoni Ngatia, a current Amazon and former World Bank economist; and Henrique Romero, a senior economist with Amazon’s Supply Chain Optimization Technologies division, addressed questions on why the problem of diversity within the economics field persists, what can be done, and how their life experiences have influenced their work as economists.

Why does the economics profession still struggle with diversity?

Muthoni Ngatia: The lack of diversity in economics becomes self-reinforcing when potential students don’t see themselves represented in the profession. It’s difficult to imagine yourself succeeding in a profession when you can’t find models in people with your lived experience.

There’s also an information barrier about what economics is, the type of work economists do, and how to prepare for a career in economics. Even in college, many of my classmates saw economics as a pathway to a career in investment banking or management consulting, which it certainly can be, however, there many more career opportunities available.

Jevay Grooms: There are many reasons. One that I found challenging, and almost prevented me from pursuing it, is very few people in the profession look like me. If you don't see anyone who looks like you in the profession, it could be difficult to imagine yourself in the domain. I also think there is a misconception about the scope of work economists do. As an undergraduate student, I didn't realize economists did work on social policies and disparities, the work that I do now.

Henrique Romero: The process of becoming an economist is long, arduous and rife with potential barriers to diversity. It takes a conscious effort to fight the inertia of the status quo at all steps along the way. For instance, economics departments mostly recruit talent from top PhD programs, which in turn tend to recruit PhD students from elite undergraduate institutions, which already suffer from a lack of representation. A forthcoming paper by Chetty et al. shows that at top-ranked universities, more students come from families in the top 1% than the bottom half of the income distribution.

What needs to happen to get individuals from more diverse backgrounds both interested in—and working—in economics?

Gerald E. Daniels Jr.: Outreach at every level of a student’s education is required to get more folks interested and working in economics. If a company, think tank, university, etc. has a sincere interest in diverse candidates, they should make a conscious effort to speak with and train the various candidates that they need. Therefore, if a company is searching for economists from underrepresented groups, create internships dedicated to universities that actively recruit and support these students. This approach can be extended to any diverse group. I would encourage anyone who needs help, to ask or hire folks like myself to support you.

Ngatia: More information about what economics is, the type of work economists do, and how to prepare for a career in economics. I think there’s a lot to be learned from programs working to get more diversity in STEM. Nurturing programs starting in high school and continuing into college can introduce a more diverse set of students to economics and how economists use data to understand and find potential solutions for social problems. Mentoring programs are also incredibly important to help students and economists throughout the pipeline advance.

Founders Library at Howard University on a sunny day
Founders Library at Howard University is seen on a sunny day. Howard recently announced it will host the AEASP “in support of increasing the pipeline of underrepresented minority economists.”
Oscar Merrida IV

Grooms: I think the onus needs to be on the entire profession. It cannot just be underrepresented groups pushing for more diversity. All economists need to acknowledge the importance of diverse backgrounds and a diversity of thought, and see it as a benefit and not a threat. Race disparities, racial inequality, systemic racism, and systems of oppression need not be taboo words but rather, words that we, as economists, acknowledge play a role in societal outcomes. For too long, economists have taken the "I don't see race" approach in research and this undermines the fight to address systemic racism.

Romero: I was the direct beneficiary of AEASP, which provides intensive training in microeconomics, math, econometrics, and research methods with the explicit goal of increasing racial and ethnic diversity. The program seems to be effective at increasing the likelihood of participants to apply to —and attend — a PhD program in economics, complete such programs, and work in an economics-related academic job (Becker et al., 2016). Although I will forever be indebted to this program, I must recognize that programs like this are difficult and costly to scale and can only be one part of a much broader solution. Bayer and Rouse (2016) provide an excellent overview of the state of diversity in the profession and discuss some promising initiatives. A full solution will likely require more equal access to education, from pre-k to PhD.

Why are diverse perspectives important to economics? How does the lack of them hinder economics?

Ngatia: Economic models require assumptions about how individuals and communities behave, those models are only as valid as they are representative of the diversity of human experience. The way we think about how humans behave necessarily depends on the humans we interact with, so a lack of diversity limits perspectives that could inform economic models. Advances in economics, or in any science really, are made by challenging existing modes of thinking. Having the same group of people in the profession limits the set problems they look at, and the tools they use.

Grooms: We have seen what a lack of diverse perspectives results in. To name a few: mass incarceration, the over-criminalization of crack cocaine relative to powdered cocaine, redlining, the overrepresentation of Black children in the foster care system, segregated schooling well after Brown v. Board of Education, and the Tuskegee experiment. Economists help shape social policy, and if we strive to be inclusive in our policymaking, we much also be inclusive in our research.

Daniels: If we allow ourselves to assume that policymakers and researchers prioritize topics that relate to their lived experience, then a lack of diversity inherently produces a lack of prioritization of research areas impacting those not represented. This is clear in the lack of research on a host of topics related to racial, gender, and LGBTQIA+ inequities. Diversity is our vehicle for producing innovative work, and a lack of diversity hinders our ability to innovate efficiently. In addition, innovating with a diverse group of people helps us to address issues that affect everyone.

How has your work as an economist been influenced by your life experiences?

Ngatia: Growing up in Kenya, I always knew I wanted to work in a capacity that would improve people’s livelihoods. When I came to college in the US, I wanted to pursue computer science. I was convinced (and still am) that the digital revolution would change the lives of many in Africa and I wanted to be a part of bringing that about. However, the first time I’d ever used a computer was when I was 16 and came to the US on an exchange program. My first semester in college, I felt completely out of my depth in my computer class.

Economics helped give me a framework to understand some of the development challenges facing Kenya and much of sub-Saharan Africa.
Muthoni Ngatia

My economics class was the complete opposite. Whereas my CS class seemed abstract, economics—with a focus on decision making with scarce resources—made more sense to me. Economics helped give me a framework to understand some of the development challenges facing Kenya and much of sub-Saharan Africa. Perhaps most importantly, I found an incredible mentor in Michael Kremer, one of my professors (and recent Nobel Laureate in Economics) who took a personal interest in me. Much of his research was in Kenya, and his work inspired me to see how economics could be a force for improving people’s lives.

Grooms: My work as an economist has always been motivated by racial and ethnic equality. I imagine a lot of this has to do with growing up a Black girl in a predominantly white society. As an undergraduate, I learned that economics could help solve — or bring to light — issues that impact vulnerable and historically oppressed communities, and I think that has been the underlining theme in my work today.

Romero: Having grown up in one of the most unequal countries in the world (Brazil), equity concerns are always salient to me. Luckily, this aligns very well with Amazon’s Customer Obsession and Earns Trust leadership principles. For instance, we will refrain from enacting changes that would improve the customer experiences of a group of customers at the cost of disproportionally degrading the experience of another group, even if the changes result in an overall improvement in short-term metrics.

In an effort to be a small part of the solution in increasing diversity, I have also devoted time to being involved in the hiring, recruiting, and development process at Amazon, from participating in over 150 interviews, becoming a Bar Raiser in Training, managing the Economist Mentoring program, to representing Amazon at university campus visits and diversity-focused conferences such as SACNAS.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, NY, New York
Join us in a historic endeavor to make Generative AI accessible to the world with breakthrough research! The AWS AI team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists drives the innovation that enables external and internal SageMaker customers to train their next generation models on both GPU and Trainium instances. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.