Advice for young scientists — and curious people in general

The Nobel Prize-winning biologist Peter Medawar published "Advice to a Young Scientist" in 1979. Here are some of Medawar’s key insights from the book.

Editor's note: This article, which is a selection of quotes from "Advice to a Young Scientist" coupled with commentary from Farnam Street staff, originally ran in May 2021 on the Farnam Street blog. It is reprinted here in its entirety with the gracious permission of Farnam Street.

The Nobel Prize-winning biologist Peter Medawar (1915–1987) is best known for work that made the first organ transplants and skin grafts possible. Medawar was also a lively, witty writer who penned numerous books on science and philosophy.

In 1979, he published Advice to a Young Scientist, a book brimming with both practical advice and philosophical guidance for anyone “engaged in exploratory activities.” Here, we summarize some of Medawar’s key insights from the book.

Application, diligence, a sense of purpose

“There is no certain way of telling in advance if the daydreams of a life dedicated to the pursuit of truth will carry a novice through the frustration of seeing experiments fail and of making the dismaying discovery that some of one’s favourite ideas are groundless.”

If you want to make progress in any area, you need to be willing to give up your best ideas from time to time. 

A black and white profile shot of the Nobel Prize-winning biologist Peter Medawar
The Nobel Prize-winning biologist Peter Medawar (1915–1987) is best known for work that made the first organ transplants and skin grafts possible.
By Digitised for CODEBREAKERS, MAKERS OF MODERN GENETICS

Science proceeds because researchers do all they can to disprove their hypotheses rather than prove them right. Medawar notes that he twice spent two whole years trying to corroborate groundless hypotheses. The key to being a good scientist is the capacity to take no for an answer— when necessary. Additionally:

“…one does not need to be terrifically brainy to be a good scientist…there is nothing in experimental science that calls for great feats of ratiocination or a preternatural gift for deductive reasoning. Common sense one cannot do without, and one would be the better for owning some of those old-fashioned virtues which have fallen into disrepute. I mean application, diligence, a sense of purpose, the power to concentrate, to persevere and not be cast down by adversity—by finding out after long and weary inquiry, for example, that a dearly loved hypothesis is in large measure mistaken.”

The truth is, any measure of risk-taking comes with the possibility of failure. Learning from failure to continue exploring the unknown is a broadly useful mindset.

How to make important discoveries

“It can be said with marked confidence that any scientist of any age who wants to make important discoveries must study important problems. Dull or piffling problems yield dull or piffling answers.”

A common piece of advice for people early on in their careers is to pursue what they find most interesting. Medawar disagrees, explaining that “almost any problem is interesting if it is studied in sufficient depth.” He advises scientists to look for important problems, meaning ones with answers that matter to humankind.

When choosing an area of research, Medawar cautions against mistaking a fashion (“some new histochemical procedure or technical gimmick”) for a movement (“such as molecular genetics or cellular immunology”). Movements lead somewhere; fashions generally don’t.

Getting started

Whenever we begin some new endeavor, it can be tempting to think we need to know everything there is to know about it before we even begin. Often, this becomes a form of procrastination. Only once we try something and our plans make contact with reality can we know what we need to know. Medawar believes it’s unnecessary for scientists to spend an enormous amount of time learning techniques and supporting disciplines before beginning research:

“As there is no knowing in advance where a research enterprise may lead and what kind of skills it will require as it unfolds, this process of ‘equipping oneself’ has no predeterminable limits and is bad psychological policy….The great incentive to learning a new skill or supporting discipline is needing to use it.”

The best way to learn what we need to know is by getting started, then picking up new knowledge as it proves itself necessary. When there’s an urgent need, we learn faster and avoid unnecessary learning. The same can be true for too much reading:

“Too much book learning may crab and confine the imagination, and endless poring over the research of others is sometimes psychologically a research substitute, much as reading romantic fiction may be a substitute for real-life romance….The beginner must read, but intently and choosily and not too much.”

We don’t talk about this much at Farnam Street, but it is entirely possible to read too much. Reading becomes counterproductive when it serves as a substitute for doing the real thing, if that’s what someone is reading for. Medawar explains that it is “psychologically most important to get results, even if they are not original.” It’s important to build confidence by doing something concrete and seeing a visible manifestation of our labors. For Medawar, the best scientists begin with the understanding that they can never know anything and, besides, learning needs to be a lifelong process.

The secrets to effective collaboration

“Scientific collaboration is not at all like cooks elbowing each other from the pot of broth; nor is it like artists working on the same canvas, or engineers working out how to start a tunnel simultaneously from both sides of a mountain in such a way that the contractors do not miss each other in the middle and emerge independently at opposite ends.”

Instead, scientific collaboration is about researchers creating the right environment to develop and expand upon each other’s ideas. A good collaboration is greater than the sum of its parts and results in work that isn’t attributable to a single person.

For scientists who find their collaborators infuriating from time to time, Medawar advises being self-aware. We all have faults, and we too are probably almost intolerable to work with sometimes.

When collaboration becomes contentious, Medawar maintains that we should give away our best ideas.

Scientists sometimes face conflict over the matter of credit. If several researchers are working on the same problem, whichever one finds the solution (or a solution) first gets the credit, no matter how close the others were. This is a problem most creative fields don’t face: “The twenty years Wagner spent on composing the first three operas of The Ring were not clouded by the fear that someone else might nip ahead of him with Götterdämmerung.” Once a scientific idea becomes established, it becomes public property. So the only chance of ownership a researcher has comes by being the first.

However, Medawar advocates for being open about ideas and doing away with secrecy because “anyone who shuts his door keeps out more than he lets out.” He goes on to write, “The agreed house rule of the little group of close colleagues I have always worked with has always been ‘Tell everyone everything you know,’ and I don’t know anyone who came to any harm by falling in with it.

How to handle moral dilemmas

A scientist will normally have contractual obligations to his employer and has always a special and unconditionally binding obligation to the truth.

Medawar writes that many scientists, at some point in their career, find themselves grappling with the conflict between a contractual obligation and their own conscience. However, the “time to grapple is before a moral dilemma arises.” If we think an enterprise might lead somewhere damaging, we shouldn’t start on it in the first place.

We should know our values and aim to do work in accordance with them.

The first rule is never to fool yourself

“I cannot give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis is true has no bearing of whether it is true or not.”

Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” All scientists make mistakes sometimes. Medawar advises, when this happens, to issue a swift correction. To do so is far more respectable and beneficial for the field than trying to cover it up. Echoing the previous advice to always be willing to take no for an answer, Medawar warns about falling in love with a hypothesis and believing it is true without evidence.

“A scientist who habitually deceives himself is well on the way toward deceiving others.”

The best creative environment

“To be creative, scientists need libraries and laboratories and the company of other scientists; certainly a quiet and untroubled life is a help. A scientist’s work is in no way deepened or made more cogent by privation, anxiety, distress, or emotional harassment. To be sure, the private lives of scientists may be strangely and comically mixed up, but not in ways that have any special bearing on the nature and quality of their work.”

Creativity rises from tranquility, not from disarray. Creativity is supported by a safe environment, one in which you can share and question openly and be heard with compassion and a desire to understand.

A final piece of advice

“A scientist who wishes to keep his friends and not add to the number of his enemies must not be forever scoffing and criticizing and so earn a reputation for habitual disbelief; but he owes it to his profession not to acquiesce in or appear to condone folly, superstition, or demonstrably unsound belief. The recognition and castigation of folly will not win him friends, but it may gain him some respect.”

Related content

US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve extreme-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air team We're looking for outstanding scientists and engineers who combine superb technical, research and analytical capabilities with a demonstrated ability architect complex hardware, software, embedded, mobile and mission-critical systems to ensure they can be found compliant to DO-178C. This person must be comfortable working with a team of top-notch software, hardware and applied science Engineers. We’re looking for people who innovate and love solving hard problems. You will work hard, have fun, and of course, make history! Export License Control This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf. Key job responsibilities The manager of the High Fidelity Modeling group will lead a group of engineers and scientists that provide computational fluid dynamics modeling, as well as aerodynamic and other surrogate models used in flight simulation of the Prime Air drones.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Scientist on this team, you will: - Be a strong contributor to Machine Learning; lending effort within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, CA, East Palo Alto
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning, systems, applied statistics and natural language technologies background to join our Learned Systems Group (LSG) and help build industry-leading large scale applied ML, AI and GenAI systems. As part of our LSG team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in systems, machine learning, artificial intelligence and human language technology. Key job responsibilities As a part of the LSG, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. A day in the life Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous large scale distributed systems, text and structured data sources, and large-scale computing resources to accelerate advances in systems and machine learning. The Learned Systems Group at AWS helps build the scientific foundations of our analytics systems, including Redshift, Athena and RDS. We constantly push the state of the art to deploy state of the art ML and AI techniques into our large scale systems and finding new ways to delight our customers. We are constantly faced with large scale systems and we apply rigorous research methods to improve them with efficient and scalable innovative solutions. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Amazon’s Global Media and Entertainment (GME) organization is creating a future of entertainment where creative content, innovation, and commerce come together. We leverage Amazon’s unique expertise across video, music, gaming, and more to create a truly immersive entertainment experience. Our team, GME Science, is focused on building science tools to optimize Amazon’s entertainment offerings, so that we can provide a great customer experience while operating as a sustainable and profitable business. We push ourselves to Think Big, building ambitious models that create value in multiple GME businesses. This role will expand our team’s measurement work. Business leaders need to quickly understand the long-term impact of various investments, such as new website features, content creation, or marketing campaigns. Our team figures out how to take short-term signals – such as clicks or signups – and turn them into estimates of long-term financial impacts. The right way to design such a metric depends on how the metric will be used, e.g. for a backward-looking evaluation or a forward-looking estimate based on limited realtime signals. We work with measurement teams in each business as well as central teams to build foundational measurement science and adapt it for unique use cases. To be successful in this role, you will need effective communication, an ability to work closely with stakeholders across our many GME partner teams, and the skill to translate data-driven findings into actionable insights. This includes developing a deep understanding of our business context, which is ambiguous and can change quickly. Your work will be used by decision-makers across GME to deliver the best entertainment experience for our customers, which means we have a high bar. Our healthy team culture is supportive and fast-paced, and we prioritize learning, growth, and helping each other to continuously raise the bar. *Impact and Career Growth* In today’s entertainment landscape, critical decisions are made with data and economic models. You’ll help GME leaders ask the right questions, and then deliver data-driven answers, creating the future of GME at Amazon. You’ll help define a long-term science vision in this space and translate it into an actionable roadmap. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding – a perfect recipe for career growth as an economist in tech. Key job responsibilities • Design and build econometric models, especially causal models, to measure the value of the business and its many features • Develop science products from concept to prototype to production, incorporating feedback from scientists and business partners • Independently identify and pursue new opportunities to leverage economic insights across GME businesses • Write business and technical documents communicating business context, methods, and results to business leadership and other scientists • Serve as a technical reviewer for our team and related teams, including document and code reviews
GB, London
We are looking for an Economist to work on exciting and challenging business problems related to Amazon Retail’s worldwide product assortment. You will build innovative solutions based on econometrics, machine learning, and experimentation. You will be part of a interdisciplinary team of economists, product managers, engineers, and scientists, and your work will influence finance and business decisions affecting Amazon’s vast product assortment globally. If you have an entrepreneurial spirit, you know how to deliver results fast, and you have a deeply quantitative, highly innovative approach to solving problems, and long for the opportunity to build pioneering solutions to challenging problems, we want to talk to you. Key job responsibilities * Work on a challenging problem that has the potential to significantly impact Amazon’s business position * Develop econometric models and experiments to measure the customer and financial impact of Amazon’s product assortment * Collaborate with other scientists at Amazon to deliver measurable progress and change * Influence business leaders based on empirical findings
US, NY, New York
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team: Amazon Go is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your Amazon account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. The Role: Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As a Machine Learning or Computer Vision Research Scientist, you will help solve a variety of technical challenges and mentor other engineers. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Santa Clara
Are you passionate about applying automated reasoning and program analysis to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. We’re looking for an Applied Scientist to help strengthen our customers' security with automation for managed controls. AWS Identity provides the bedrock for secure and continuous access to all AWS services. By quickly connecting millions of users, across the world we empower organizations and enterprises to accelerate their cloud and digital transformation. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Key job responsibilities * Interact with various teams to develop an understanding of their security and safety requirements. * Apply the acquired knowledge to build tools and algorithms, find problems, or show the absence of security/safety problems. * Implement these capabilities through the use of Automated Reasoning and various concepts from programming languages. * Perform analysis of the customer systems using tools developed in-house or externally provided * Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.