Alessandro Achille, a senior applied scientist at Amazon Web Services, is seen standing outside at night with a display of colored lights in the background
Alessandro Achille, a senior applied scientist at Amazon Web Services, is tackling fundamental challenges that are shaping the future of computer vision and large generative-AI models.

“I don't remember a time in my life when I wasn't interested in science"

From the urgent challenge of "machine unlearning" to overcoming the problem of critical learning periods in deep neural networks, Alessandro Achille is tackling fundamental issues on behalf of Amazon customers.

It was on a “hunting trip” to Italy in 2015 that computer vision pioneer Stefano Soatto first came across Alessandro Achille. More accurately, it was a mind-hunting trip, to the prestigious Scuola Normale Superiore in Pisa. The university was founded by Napoleon, and its alumni include Nobel-Prize-winning physicists Enrico Fermi and Carlo Rubbia and Field-Medal-winning mathematician Alessio Figalli. “It puts students through a grueling selection and training process,” says Soatto, “so those who survive are usually highly capable — and rugged.”

It was a successful trip that evolved into a powerful research partnership. Today, Achille is working as a senior applied scientist at Amazon Web Services' (AWS') AI Lab, on the California Institute of Technology (Caltech) campus, tackling fundamental challenges that are shaping the future of computer vision (CV) and large generative-AI models.

But back in 2015, Achille was immersed in a master’s in pure mathematics, “spiced up”, as he puts it, with algebraic topology.

Related content
Early on, Giovanni Paolini knew little about machine learning — now he’s leading new science on artificial intelligence that could inform AWS products.

“I don't remember a time in my life when I wasn't interested in science,” he says. Achille was particularly interested in the foundations of mathematics. “I focused on logic, because I’ve always had this nagging problem at the back of my mind of exactly why things are the way they are in mathematics.”

Achille’s first taste of computer vision arose when he and his peers decided to augment an annual school tradition: a 24-hour foosball tournament between mathematicians and physicists. Besides a sport competition, the event had become a showcase of the students’ engineering capabilities. That year, after adding live streaming and a fully automated scorekeeping system, the students thought it was time to add real-time tracking of the ball.

“It’s just a white blob moving on a green background. How hard could it be?” says Achille. The short answer is, harder than they thought. So Achille took a class that would teach him more — a choice that would eventually lead to an invitation from Soatto to join him at the University of California, Los Angeles, for a PhD in computer vision.

“In Italian education, it sometimes feels like there is a hierarchy,” says Achille. “The more abstract you are, the better you are doing!” So why the departure from pure mathematics? In the end, says Soatto, “Alessandro’s work became so abstract he couldn’t see a path to impact. That’s very frustrating for a really smart person who wants to make a difference in the world.”

Deep learning takes off

Achille’s PhD coincided with the rise of deep learning (DL), which would become a game-changing technology in machine learning and computer vision. “At the time, we didn't know if it was anything more than just a new, slightly more powerful tool. We didn’t know if DL had the power of abstraction, reasoning, and so on,” says Achille.

Related content
Two recent trends in the theory of deep learning are examinations of the double-descent phenomenon and more-realistic approaches to neural kernel methods.

The power of deep learning was becoming clear, though. During an internship in 2017, Achille worked on a computer vision model that could learn a representation of a dynamic scene — a 3-D shape that was moving, changing color, changing orientation, and so on.

The idea was to capture and isolate the semantic components of the scene — shape, size, color, or angle of rotation — rather than capturing the totality of the scene’s characteristics. Humans do this disentangling naturally. That’s how you would understand the sight of a blue banana, even if you had never seen one before: “banana” and “blue” are separate semantic components.

While Achille enjoyed the project and appreciated its importance, he was struck by the artificiality of the setting. “I was not working backwards from a use case,” he says. Shortly after, Achille became an intern at the AWS AI Lab that had just been established at the Caltech campus, where he was immediately given a real-world challenge to solve on a newly launched product called Custom Label.

Real-world problems

At the time, Custom Label allowed Amazon customers to access CV models that could be trained to identify, say, their company’s products in images — a particular faucet, for example. The models could also be trained to perform tasks like identifying something in a video or analyzing a satellite image.

AWS researchers realized it was impractical to expect a single model to accurately deal with such a range of esoteric image possibilities. A better approach was to pretrain many expert models on different imagery domains and then select the most appropriate one to fine-tune on the customer’s data. The problem for AWS was, how could it efficiently discover which of 100 or more pretrained CV models would perform best?

Alessandro Achille: The information in a deep neural network

During his research in machine learning, Achille became passionate about information theory — a mathematical framework for quantifying, storing, and communicating information. So he used that approach on this so-called model selection problem. “For a hammer, everything looks like a nail,” he laughs.

The problem is how to measure the “distance" between two learning tasks — the task a given AWS model has been pretrained on and the novel customer task. In other words, how much additional information is required by the pretrained model to produce a good performance on the customer task? The less additional information required, the better.

Achille was impressed by the task because it was an important customer issue with a fundamental mathematical problem behind it. “We formulated an algorithm to compute this efficiently, so we could easily select the expert model best suited to solving the customer’s task,” says Achille. “It was the first solution to this problem.”

Achille found Amazon’s applied approach to be a compelling way to work, and when Soatto established the AWS AI Labs, Achille was happy to join him there.

“One of the beauties of being at Amazon is that we’re tackling some of the world's most challenging emerging problems,” says Soatto. “Because when AWS customers have difficult problems to address, they come to us. From a scientific perspective, this is a goldmine.”

Machine unlearning

Achille is currently staking out a vein of research gold in a critical new area of artificial intelligence (AI): AI model disgorgement, more popularly known as "machine unlearning". It is critical in any implementation of machine learning models that the data used to train the model are used responsibly, in a privacy-preserving manner, and in accordance with the appropriate regulations and intellectual-property rights.

Related content
At this year’s ACL, Amazon researchers won an outstanding-paper award for showing that knowledge distillation using contrastive decoding in the teacher model and counterfactual reasoning in the student model improves the consistency of “chain of thought” reasoning.

Modern ML models have become very large and complex, requiring a great deal of data and computational resources to train. But what if, once a model is trained, the contributor of some of those training data decides, or is obligated by law, to withdraw the data from the model? Or what if some of the training data is discovered to be biased? Retraining a large model afresh, with some data withheld, may be impractical, particularly if the requirement for such changes becomes commonplace in the shifting legal landscape.

The next level

In 2019 that Soatto, Achille, and Achille's fellow UCLA PhD student Aditya Golatkar published a paper entitled “Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks”; the paper established a novel method for removing the effects of a subset of a deep neural network's training data, without requiring retraining.

Eternal sunshine of the spotless net: Selective forgetting in deep networks

“I was happy to see interest in ‘selective forgetting’ explode after we published this paper,” says Achille. “Model disgorgement is a fascinating problem, and not only because it's very important for AWS customers. It also demands that we understand everything about a model’s neural network. We need to understand where information is held in a model’s weights, how it is encoded, how it is measured.”

It is in this fundamental work that Achille took the field to “the next level”, says Soatto. And this year, Achille and Soatto, on a team also featuring Amazon Scholar Michael Kearns, coauthor of the book The Ethical Algorithm, led the field by introducing a taxonomy of possible disgorgement methods applicable to modern ML systems.

The paper also describes ways to train future models so that they are amenable to subsequent disgorgement.

Related content
The surprising dynamics related to learning that are common to artificial and biological systems.

“It is better for models to learn in a compartmentalized fashion, so in the event that some data is found to be problematic, everything that touched those data gets thrown away, while the rest of the model survives without having to retrain it from scratch,” says Soatto.

This work has been particularly satisfying, says Achille, as it obliged computer scientists, mathematicians, lawyers, and policymakers to work closely together to solve a pressing modern problem.

Critical learning periods

The breadth of Achille’s interests is formidable. His other prominent research includes work on “critical learning periods” in the training of deep networks. The work arose through serendipity, after a friend studying for a medical exam on the profound effect of critical learning periods in humans jokingly asked Achille if his networks also had them. Interest piqued, Achille explored the idea, and found some striking similarities.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

For example, take infantile strabismus, a condition in which a person's eyes do not align properly from birth or early infancy. If not treated early, the condition can cause amblyopia, whereby the brain learns to trust the properly working eye and to ignore the visual input from the misaligned eye, to avoid double vision.

This one-sided competition between the two eyes (data sources) leads to worsening vision in the misaligned eye and of course the loss of stereo vision, which is important for depth perception. Amblyopia is difficult to reverse if left untreated into adulthood. But treating the eyes early, enabling them to work together optimally, makes for a robust vision system.

Similarly, in the early training of multimodal deep neural networks, one type of data may become favored over another, simply through expediency. For example, in a visual-question-answering model, which is trained on images and captions, the easy-to-use textual information may outcompete visual information, leading to models that are effectively blind to visual information. Achille and his colleagues suggest that when a DL model takes such shortcuts, it has irreversible effects on the subsequent performance of the model, making it less flexible — and therefore less useful — when fine-tuned on novel data.

Off the charts

Having explored the causes of critical learning periods in deep networks, the team offered new techniques for stabilizing the early learning dynamics in model training and showed how this approach can actually prevent critical periods in deep networks. The practical benefits of this research aside, Achille enjoys exploring the parallelisms of artificial and biological systems.

“Look, we can all recognize that the actual hardware of a network and a brain are completely different, but can we also recognize that they are both systems that are trying to process information efficiently and trying to learn something?” he asks. Are there some fundamental dynamics of learning, and how it relates to the acquisition of information, that are shared between synthetic and biological systems? Watch this space.

Looking back on the eight years since his hunting trip to Pisa, Soatto considers what he most appreciates about his Amazon colleague.

“First, the brilliance of the way Alessandro frames problems: he thinks very abstractly, yet he is also a hacker who thinks broadly, all the way from mathematics to neuroscience, from art to engineering — this is very rare. Second, his curiosity, which is absolutely off the charts.”

For Achille’s part, when asked if he prefers tackling the challenges that arise from AWS products or working on fundamental science problems, he demurs. “I don’t need to split my time between product and fundamental research. For me, it ends up being the same thing.”

Indeed, one of Amazon’s most abstract thinkers has found a path to true impact.

Research areas

Related content

GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center at AWS is a new strategic team that helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for ML Data Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an ML Data Scientist, you will * Collaborate with ML scientist and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges * Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production * Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder * Provide customer and market feedback to Product and Engineering teams to help define product direction About the team The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
GB, Cambridge
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist on our team you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in multi-modal AGI models, with a focus on speech generation. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to build Machine Learning models for their application in speech generation. This role requires a pragmatic technical leader comfortable with ambiguity, capable of summarizing complex data and models through clear visual and written explanations. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We work with Alexa and multiple other teams to research and develop advanced state-of-the-art speech technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Research Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As a Research Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business.
US, WA, Seattle
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. In 2019, Amazon co-founded The Climate Pledge and made a commitment to achieve net-zero carbon by 2040 —10 years ahead of the Paris Agreement. We invited others to join us and there are now more than 300 businesses and organizations across 51 industries and 29 countries that have signed the Pledge, which means we are collectively coming at the climate crisis from nearly every sector and nearly every angle. As part of our efforts to decarbonize our business, we became the world’s largest corporate purchaser of renewable energy in 2020, and last year, we reached 85% renewable energy across our business, and are on a path to power our operations with 100% renewable energy by 2025. We recently announced that AWS will be water positive by 2030, returning more water to communities than it uses in its direct operations. The company also announced its 2021 global water use efficiency (WUE) metric of 0.25 liters of water per kilowatt-hour, demonstrating AWS’s leadership in water efficiency among cloud providers. To learn more about AWS’s water+ commitment visit: Water Stewardship. Come join the team that is building the tools and innovative technology to manage our growing portfolio of renewable energy investments, including solar, on-shore and off-shore wind farms. Key job responsibilities As an data scientist, you will employ machine learning and analytics to create scalable solutions for problems in sustainable energy space. You will dissect large historical business data sets to enhance and streamline essential processes. You will partner with data and software teams to create models for predictive insights and establish automated methods for large data analysis. A day in the life To learn more, you can visit: amazon sustainability in the cloud About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, VA, Arlington
As cloud technologies continue to transform businesses, skilled individuals are in high demand. At AWS Training and Certification (T&C), we are passionate about revolutionizing the way people advance their cloud skills and careers. We equip diverse builders of today and tomorrow with the knowledge they need to leverage the power of the AWS Cloud. Join our dynamic, fast-growing team and help us empower our customers to build cloud skills. The AWS Certification team is seeking a Psychometrician with experience working with criterion-referenced assessment programs to support a large global AWS Certification program. In this role, you will support all psychometric aspects of exam development and operation, including job analyses, standard setting, automated test assembly, item and test analyses, optimal item bank design, quality assurance, and project planning. You will work closely with a team of psychometricians, subject matter experts, certification exam program managers, publishing, delivery, security, product management, and translation/localization teams to support ongoing analyses of exam data. To be successful in this position, you must be highly motivated, creative, detail oriented, and a self-starter who is able to think big, execute, ensure high quality, yet stay focused on the details. Key job responsibilities - Conduct Job Task Analysis (JTA) workshops and post-JTA survey analyses to define the blueprint and test specifications for new certifications or updates to existing certifications - Conduct standard setting studies to set the passing score for an exam - Run item analysis to evaluate quality and performance of exam items - Use automated test assembly procedures to assemble forms or item pools - Work with content development to optimize the health of item banks - Support the development of a cloud-based analytics and reporting system - Interpret and clearly communicate the results of analyses to stakeholders through written and oral reports - Follow the accreditation standards set by ISO/IEC:2012 17024 and the National Council for Certifying Agencies (NCCA) as they relate to valid psychometric practices - Contribute to the development and execution of the strategic goals regarding the AWS certification program - Consult with leadership, internal staff, external consultants, and industry leaders regarding advancement of current offerings
IL, Haifa
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
US, WA, Seattle
The PeopleInsight (PI) org focuses on improving employee experience at Amazon, driving productivity and retention, and resulting in a motivated workforce of over 1.5 million associates and corporate employees. These are the questions we ask — Are we facilitating the right conversations to build an engaged workforce? What trends are we seeing in our employee data and what should managers do about it? How do we solve customer problems in the most efficient way possible? If these challenges sound interesting to you, you want to be a part of building ‘first of their kind’ products, and you are passionate about putting employee experience first, consider the PeopleInsight team. PI helps Amazon drive improvements in employee talent outcomes (e.g., job satisfaction and retention), and strive to be Earth’s Best Employer through scalable technology. PI is looking for a customer-obsessed Data Scientist for Employee Engagement Services, a suite of internal employee engagement and recognition products supporting Amazonians WW, with a strong track record of delivering results and proven research experience. This role will own and execute strategic cross-functional employee engagement experiments, analysis and research initiatives across Operations and Corporate audiences for high CSAT products. The Data Scientist must love extracting, cleaning and transforming high volume of data into actionable business information and be able to drive actionable insights. The data scientist will partner with Product, UX and Dev teams to own end-to-end business problems and metrics with a direct impact on employee experience. Success in this role will include influencing within your team and mentoring peers. The problems you will consider will be difficult to solve and often require a range of data science methodologies combined with subject matter expertise. You will need to be capable of gathering and using complex data set across domains. You will deliver artifacts on medium size projects, define the methodology, and own the analysis. Your findings will affect important business decisions. Solut Key job responsibilities • Implement statistical methods to solve specific business problems utilizing code (Python, R, Scala, etc.). • Development of user classification models and other predictive models to enable a personalized experience for a user. • Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. • Collaborate with product management, software developers, data engineering, and business leaders to define product requirements, provide analytical support, and communicate feedback; develop, test and deploy a wide range of statistical, econometric, and machine learning models. • Build customer-facing reporting tools to provide insights and metrics which track model performance and explain variance. • Communicate verbally and in writing to business customers with various levels of technical knowledge, educating them about our solutions, as well as sharing insights and recommendations. • Earn the trust of your customers by continuing to constantly obsess over their needs and helping them solve their problems by leveraging technology About the team The PeopleInsight team is a collaborative group of Business Intelligence Engineers, Data Scientists, Data Engineers, Research Scientists, Product Managers, Software Development Engineers, Designers and Researchers that studies a workforce numbering in the hundreds of thousands. Our work is dedicated to empowering leaders and enabling action through data and science to improve the workplace experience of associates and ensure Amazon is Earth's Best Employer.
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. Concretely, you will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product. You will also be challenged to think several steps ahead so that the solutions you are building today will scale well with future growth and objective (e.g.: sustainability). You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. You will have the opportunity to thrive in a highly collaborative, creative, analytical, and fast-paced environment oriented around building the world’s most flexible and effective transportation planning and network design management technology. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of 15 scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues.
US, WA, Seattle
This is a unique opportunity for a postdoc to work on research projects that investigate state of the art NLP, IR, and LLM approaches for understanding retail products and their pricing. This will include working with billion-scale datasets and investigating how the world knowledge captured by LLMs reflects real world prices, and investigating more advanced prompting and reasoning techniques to construct large knowledge graphs that are specialized for various pricing use cases such as probabilistic price estimation, as well as error detection and correction. Key job responsibilities In this role you will: • Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. • Publish your innovation in top-tier academic venues and hone your presentation skills. • Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise. About the team The retail pricing science team is a centralized diverse team of STEM scientists that develop statistical, ML, RL, optimization and economic models that drive pricing for products sold by Amazon worldwide, as well as monitoring of prices and experimentations in pricing. The team has a dual focus on competitiveness and long term financial optimality.
US, CA, East Palo Alto
AWS Analytics is looking for a passionate, inventive Applied Scientist with a strong background in either machine learning, programming languages or databases to help create industry-leading analytics experiences powered by generative AI, machine learning, and program analysis. AWS provides a comprehensive set of analytics services for all data analytics needs and enables organizations of all sizes and industries to reinvent their business with data. From storage and management, data governance, actions, and experiences, AWS offers purpose-built services that provide the best price-performance, scalability, and lowest cost. We are a team dedicated to delivering transformative, science-driven analytics experiences for Amazon customers and having fun doing so. Our leadership team fosters an inclusive team culture and encourages work-life balance to bring out the best in each team member. Collaboration and mentorship are key tenets of our fabric. We are a growing team dedicated to supporting new members achieve their aspirations. Key job responsibilities As part of the AWS Analytics science team you will have the opportunity to apply your skills in machine learning, program analysis, and databases to impact some of the largest analytics services in the industry and their customers. You will innovate by designing and building agent-based solutions orchestrating foundation models, machine learning models, and program analyses to simplify AWS customers’ analytics journey and optimize their cost-performance profile. You will collaborate with a talented team of applied science peers to drive scientific impact and with engineering, product, and business leaders to launch your work in production at Amazon scale. A day in the life A mix of the following activities: talking to product leaders and customers to define science features; researching the state of the art and creating science plans to build them; building and rigorously benchmarking the science implementations of such features; partnering with engineering teams to onboard science work and launch it in production; preparing, publishing, and presenting scientific work at top-tier science venues and evangelizing it within the company; upgrading your science knowledge by participating in reading groups and science presentations by internal or external scientists; mentoring applied science interns and science peers in all of the above functions. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.