A split screen screengrab from a video interview shows Siddhartha Srinivasa, left, director of Amazon Robotics AI, and Nia Jetter, Amazon Robotics AI senior principal technologist, right
Siddhartha Srinivasa, left, director of Amazon Robotics AI, joined Nia Jetter, right, Amazon Robotics AI senior principal technologist, to discuss the field of robotics, Amazon robotics initiatives, where they get their ideas from, and advice on starting a career in robotics.

Amazon Robotics AI leaders believe now is a 'particularly good time' to explore careers in robotics

Siddhartha Srinivasa, director of Amazon Robotics AI, and Nia Jetter, Amazon Robotics AI senior principal technologist, discuss inspiration, their roles at Amazon, and tips for pursuing a robotics career.

On October 6, Siddhartha (Sidd) Srinivasa joined Nia Jetter, Amazon Robotics AI senior principal technologist, to discuss the field of robotics, Amazon robotics initiatives, where they get their ideas from, and advice on starting a career in robotics.

Jetter, who earned a bachelor of science degree from MIT in math with computer science, and a master's degree in aeronautical and astronautical engineering from Stanford University, joined Amazon earlier this year. Previously, she spent 20 years in the aerospace Industry, including more than 18 years at Boeing where she rose to become a technical fellow in autonomy and AI.

Srinivasa joined Amazon as director of Robotics AI in 2018, and since 2017 has been the Boeing Endowed Professor at the School of Computer Science and Engineering at the University of Washington. Prior to that, he was the Finmeccanica Associate Professor at the Robotics Institute at Carnegie Mellon University where he founded the Personal Robotics Lab in December 2005. Srinivasa, who describes himself as “a full-stack roboticist, with a focus on robotic manipulation”, has worked in the robotics field since 1999.

Srinivasa, who is an IEEE Fellow, was also a first-wave founder of Berkshire Grey, a robotics company using machine vision and AI to solve material handling problems, and has led Intel’s research in robotics, the Quality of Life Technologies NSF ERC, the DARPA ARM-S, DARPA Robotics Challenge, and the HONDA Curious Minded Machine program. His algorithms have run on the NASA Robonaut and the Mars Rover and he is an editor for The International Journal of Robotics Research.

Q&A with Sidd Srinivasa, director of Amazon Robotics AI

The entirety of their conversation is above, including why Srinivasa considers himself an “accidental roboticist”, why the “democratization of robotics” is an essential hurdle to clear, and why now is a particularly good time to explore robotics. Below we have excerpted some answers from their wide-ranging conversation on career advice, sources of inspiration, and the field of robotics in general. Editor’s note: Some of these answers have been edited for length.

Advice for those considering robotics and AI careers

Srinivasa: “First, I think you should do it! Stop what you are doing and work on robots! Robotics is still at its infancy. This is both a blessing and a curse, more a blessing. Unlike other fields that require tens of years of work to perfect how to use an instrument, or perfect how to develop techniques, or even learn the language by which you can describe problems and solutions, the textbooks for robotics have yet to be written. There are a few. The barrier for entry into robotics is really low, particularly if you are in adjacent fields.

“Do something that puts you into a state where your work is relevant. If you are undergrad or grad student, I would recommend that you go find an internship in a place where robotics is actually the core business. Not robotics is something cool and fancy to have, but where robotics is actually material to the core business. Go through that experience. Live through that experience, be put through the fire of actually having to deliver something that matters. I think a lot of people who talk a lot about robotics often haven't the experienced the fire of production and delivery, and I think there is a lot of clarity that comes with that.”

Why increasing diversity in robotics and AI matters

Jetter: “I’m hugely passionate about lowering the barrier of entry for understanding topics like artificial intelligence and robotics. I genuinely believe that, through lowering the barrier of entry, that will allow us to increase inclusion and diversity of thought and truly be able to allow us to solve some of the most challenging problems technically, optimally, and most efficiently.”

The modern myth of robotics

Srinivasa: “One thing that we often get misled by is we look at YouTube videos of robots and we think, ‘It’s all solved, everything’s solved, this thing can do a backflip.’ The challenge is that it’s not the one time it does a backflip, it’s the 50 million times it doesn’t and it needs to do. That’s what I find fascinating. It is really about closing the loop and figuring out what to do when things go wrong that is the most critical aspect of robotics. When things go right, the YouTube video is easy to do, but taking something from 80 percent to 96 percent where you are systematically and methodically addressing all the things that go wrong, that's the most important learning for someone to get and I think that's where the real roboticists get their most joy, in taking something from 80 to 95 or 96 percent.”

On choosing to work in robotics at Amazon

Srinivasa: “I was finishing up with Berkshire Gray and I was just being a professor, just happy being a professor, and I did get a call from a bunch of places about joining and being part of their efforts. I asked them all one question: ‘Why robots? Why do you need robots? All I know how to do is build robots and that’s all I want to do, so why do you need robots?’ I found the answers from several of the others very tenuous, which was ‘We want to solve AI’ – whatever that means —'dot dot dot, robots!’ Amazon was to me one of the few places where there was just this very meaningful connection between robots and what the business value for the company was, and how we can really improve our associates’ experience."

Career advice from Amazon Robotics recruiters

"One thing I also really believe in is smart people will come with answers to questions, but it's really the questions that matter. And one of the nice things about being at Amazon is that I get to understand what the questions are and I get to frame the direct questions that I can then sort of unleash upon amazing brilliant people like you (Nia Jetter), to answer.”

Jetter: “The opportunity to help people, to obsess over our customers’ needs, to meet our customers’ needs, and solve some very real challenges that actually need to be solved in order to continue to meet our customers’ needs. Finding a way to truly help people here is something that is a huge attraction to me.”

On asking the right questions

Srinivasa: “There’s a lot that goes into building a product that is not science. A lot of startup founders or even technologists that I work with that say, ‘I’ve got this cool tool or this cool idea and we should do it.’ And it’s really about the what, why, when, where, and how. You could build a flying car and nobody might want it, history is strewn with examples of things that nobody wants, even though it was technically very hard to create.”

On being a science leader

Srinivasa: Put yourself in a situation where your failure has material consequences. Whether you are a professor or whether you are a product leader, otherwise you are just dabbling. I’ve always rejected dabbling because I’ve always wanted to be in situations where the work that I did had real consequences, whether it succeeded or if it failed. That somehow really sharpens me and gets me excited about doing it. While it’s nice to have some safety nets, I do also think we should take the leap of faith and do something whose success or failure has material consequences.”

On loving robotics

Srinivasa: "The journey of being able to do it all. I love writing code, I love building robots, I love welding metal, I love proving theorems, but the opportunity to do it all and to really align against metrics and do it in a way such that you are able to bring meaningful change has always been really exciting for me."

On where they get their ideas

Srinivasa: “I love two things, one is observing the world and the other one is trying to explain things. I love explaining things to my kids, I love teaching. I think the act of teaching and the act of explaining really forces you to ask the five whys. I am very curious, I love reading about various things. Robotics is one of those things where you watch the world behave and you try to ask, okay, why is it behaving like the way its behaving and how do I think about it clearly? In many ways it is a very descriptive science. In that, when I look at a robot picking up a coffee mug, and I prove a theorem and I write an algorithm and build a robot that picks up the coffee mug, in some ways I'm explaining using the language that is available to me how a coffee mug is picked up.

“One of the projects I work on as a professor at the University of Washington is on a robot that can help feed people with disabilities. The reason I started working on that problem was because I visited the Rehab Institute of Chicago, it’s now called the Ability Lab, and I just asked people ‘What can I do that can at least attempt to make your life better?’ The top request from them was they just want to be able to eat by themselves and not have to be fed by a caregiver. So I was like ‘OK, I’ll do that, that sounds meaningful and important and I’m sure it’s challenging.’ History has shown that we’ve invented many things that we think are useful, but are not. So talking to customers is really, really valuable.”

Jetter: “I think of myself as someone who doesn’t just think outside the box, but exists outside of the box. I try to be very observant and I try to listen a lot and I try to draw analogies between experiences. I try to leverage some of my experiences that might be unique from my perspective, particularly coming from aerospace and defense and now being in robotics, just leveraging my past experience and bringing that new diversity of thought, in many ways, to robotics. I’m super passionate about fundamentals and first principles and breaking things down.

“A lot of my ideas come from drawing analogies based on my experience, so seeing something new that I might not be expert in or have depth in and relating it to something that I do have depth in and looking at it through a different lens. That’s been effective for me in at least a couple of instances in my career.”

See the latest openings in AI, robotics, and other fields. Or, if you're a student interested in pursuing an internship, learn about upcoming opportunities on the Amazon Student Programs page.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.