Anton van den Hengel is seen smiling into the camera, with some office buildings in the background
Anton van den Hengel

Anton van den Hengel’s journey from intellectual property law to computer vision pioneer

Amazon’s director of applied science in Adelaide, Australia, believes the economic value of computer vision has “gone through the roof".

Anton van den Hengel, an international pioneer in computer vision and its many applications, departed the University of Adelaide in South Australia to join Amazon as director of applied science in April 2020. He is creating a new, world-class machine-learning hub in Adelaide and supporting Amazon’s business through the development and application of state-of-the-art computer vision and scalable machine learning.

Related content
Senior principal scientist Aleix M. Martinez on why computer vision research has only begun to scratch the surface.

In 2018, van den Hengel was the founding director of the Australian Institute for Machine Learning (AIML), Australia’s first institute dedicated to machine learning research. When he left to join Amazon, AIML was 140 people strong and near the top of the institutional world rankings in terms of computer vision research. He remains the part-time director of AIML’s new Centre for Augmented Reasoning, whose mission is to build core Artificial Intelligence (AI) capability in Australia.

Van den Hengel has authored more than 300 research papers, commercialized eight patents, and been chief investigator on research projects funded by many Fortune 500 companies.

But it could all have been so different. The young van den Hengel first got into computer science simply to support his efforts to become an intellectual property lawyer. In fact, he completed his law degree.

Amazon in Australia
Research teams in Adelaide are developing state-of-the-art, large-scale machine learning methods and applications involving terabytes of data. They work on applying ML, and particularly computer vision, to a wide spectrum of areas.

“I’d bought the suit, tie, and bright white shirt and was all ready to start my first day as an entry level lawyer,” he recalls. “Then, instead, I turned around and went straight back into the University of Adelaide. I spent the next couple of decades there.”

What followed was a master’s, then PhD in computer science and, ultimately, building up the University of Adelaide’s forerunner to AIML, the Australian Centre for Visual Technologies.

The chance to have an impact

What turned van den Hengel around was the chance to study computer vision.

“I saw the opportunity to engage with something that I realized was going to have incredible impact,” he says. Computer vision and its applications are everywhere today, but in the early 1990s, things were very different. “It's hard to believe now but at the time there were maybe 1000 people in the world working on computer vision, at a time when there weren't any digital cameras,” he reminisces. “Most papers in CV were at least half about how people had taken the images.”

[In the early 90s] there were maybe 1000 people in the world working on computer vision, at a time when there weren't any digital cameras. Most papers in CV were at least half about how people had taken the images.
Anton van den Hengel

Van den Hengel understood that humans are primarily visual animals and he clearly saw the inevitability of computers using vision to sense, and ultimately interact with, the world. “But back then, having a computer that could actually either measure or impact upon the real world was virtually unbelievable,” he says.

Since then, he says, computer vision has transformed from a heavily mathematical field with 300 people at every conference who all knew each other, to conferences of many thousands of people and auditoria full of companies trying to attract staff and sell things.

“The economic value of computer vision has gone through the roof,” he says.

Computer vision is a fundamental technology, van den Hengel says, because it relates the real world to symbols. “Humans reason about things in terms of symbols, so ‘cat’, ‘sky’, ‘car’, ‘road’, and ‘fish’ are all symbols, right? Computer vision takes visual signals from the real world and relates those signals to symbols,” he says.

That's been the critical missing piece of the puzzle. For decades it was predicted that by the year 2000 we would have robots doing the housework and many other ‘magical’ things, but we came up short because there's an infinite variation of things out there in the real world and it's much harder to get a computer to reason about our physical environment than anybody imagined.”

Looking for answers

This missing piece is tackled by a subfield of computer vision known as visual question answering (VQA). The idea is to enable computers not only to understand the content of an image (or video/livestream) in a more semantic, human-like way, but also to answer questions posed in natural language about that image. For example, “Where was this photo taken?”, “Does it look like the person on the picnic blanket is expecting someone?”, “What’s the color of the dog nearest the stop sign?”.

Van den Hengel is the world’s most-cited researcher in VQA by an enormous margin, with close to 22,000 citations.

Fireside chat: Anton van den Hengel and Simon Lucey

“I got into it very early because I saw it as a threshold change in the way that artificial intelligence works,” van den Hengel says. “What's interesting about VQA is that you ask the question at run-time and need the answer immediately, so it needs to be very flexible, unlike current machine learning applications, which are often fixed, single-purpose solutions to specific problems.”

In other words, it needs to be closer to true artificial intelligence – often referred to as artificial general intelligence.

In that vein, imagine a robot that could follow natural-language instructions, based on a greater understanding of what it sees around itself. It’s a sci-fi dream, but for how much longer?

In 2018, using a vision-and-language process similar to VQA, Van den Hengel and a team of colleagues from across Australia developed a simulator that uses imagery taken from the inside of real buildings to teach virtual agents to successfully navigate using visually grounded instructions, such as: “Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by the moose antlers hanging on the wall.” It is only a matter of time before we can talk to our self-driving cars in a similar manner when necessary, says van den Hengel.

The power of neural networks

Rapid developments in machine learning are behind the recent supercharging of computer vision research.

“In the last 10 years of computer vision, we have essentially trained deep-learning neural networks to replace all of these lovely computer-vision algorithms that we'd previously come up with for solving a whole bunch of problems,” he says. “In fact, neural networks are so much better at it, they went from being just an interesting solution to a puzzle to being a practical solution to some of the core challenges we face.”

While at the University of Adelaide, van den Hengel has applied advances in ML and computer vision to make the world better in a variety of ways. These include working with Adelaide-based medical technology company LBT Innovations in creating an automated pathology machine called APAS (Automated Plate Assessment System) Independence, which can screen and interpret high volumes of pathology plates.

“There's a shortage of trained pathologists, partly because it's not a lot of fun sitting all day doing chemistry and looking at samples. APAS does the drudge work of the visual inspection process,” he says. The device was FDA approved in 2019.

Beyond computer vision, van den Hengel is currently the chief investigator for the Australian National Health and Medical Research Council’s Centre of Research Excellence in Healthy Housing, which is using ML to help deliver better outcomes within the Australian housing system, not only in terms of housing, but also in terms of health.

“People who are homeless suffer diseases and injuries, which put them into hospital, and homelessness can see people spiral into a set of difficult conditions that are very expensive for society to address,” he says. “It's actually cheaper to house somebody than to fix the impact of homelessness. So where can we intervene in the housing process in a way that benefits everybody and also saves money?”

Not all of van den Hengel’s work is quite so serious, however.

The paper I'm most happy about but that gets the least recognition is one that tells you how to build real Lego models of objects in images,” he says. “It’s got brilliant maths in it; some of my favorite maths. And it incorporates gravity, structural considerations and, you know, fantastic maths.” And did he mention the maths?

Van den Hengel has even used ML to design an IPA beer.

“Collecting the data was a real trauma: we had to drink, and rate, a lot of beer,” he laments. He named the resulting ale The Rodney, in homage to the Australian AI researcher and roboticist Rodney Brooks, whose work resulted in the Roomba vacuum cleaner.

Joining Amazon

Always an advocate for Australia on the world stage, van den Hengel was keen to play a leading role in Amazon’s research push into the country. “It was a fantastic opportunity to start a new group in Australia for a company like Amazon.”

Typically, when academics transition to Amazon, they talk about the increase in pace from academia to industry. Van den Hengel bucks that trend.

“I was running a group with 140 people, trying to make enough money to pay them, keep the doors open, deliver on projects for tens of millions of dollars, doing PR, you name it,” he says. “Here, I've got about 25 world-class people with PhDs who work for me and 12 interns.”

Van den Hengel noted that Amazon is a results-focused environment. “At Amazon you are expected to deliver, but you do it with an engineering team and support systems all geared towards delivering customer benefit.”

So what is van den Hengel delivering on? A current project is applying visual inspection methods to help to make sure that Amazon customers get the best fresh produce possible.

I think the whole retail field is moving towards a better understanding of the nature of objects in the world and how humans relate to those objects, or products. And that's something that computer vision is particularly well-placed to deliver.
Anton van den Hengel

“Visual inspection is a magnificent challenge and a core problem in computer vision,” he says,” and addressing it means we can make sure that when a customer receives a delivery of, say, tomatoes, they are as perfect as can be.”

Another key project involves using computer vision and ML to understand in a deeper way the hundreds of millions of items in the ever-changing Amazon catalogue. The catalogue has a trove of information, both in the word-based product descriptions and the images supplied by sellers.

“Making the most of the information contained in these two sources of information – which is essentially what humans do – is an interesting challenge, because it relies on the relationships between visual signals and symbols,” he explains, adding that cracking this challenge will help customers who are using Amazon search find the product that best matches their need “even if they're not entirely sure how best to specify it themselves.”

Despite the considerable demands of managing a growing team, van den Hengel is determined to remain hands-on with his own research. “Amazon's an innovative company, and really, truly innovating in a way that's going to provide something of value to customers that nobody else can means that you need managers who deeply understand where the technology can go,” he says.

So where is the technology going?

“I think the whole retail field is moving towards a better understanding of the nature of objects in the world and how humans relate to those objects, or products,” he says. “And that's something that computer vision is particularly well-placed to deliver.”

Browse through the open science positions in Amazon's Australia offices.

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.