Christos Christodoulopoulos seated at a desk with a computer.
Christos Christodoulopoulos is a senior applied scientist with the Alexa Knowledge team based in Cambridge, UK. In this article, he provides career advice to computational linguistics' graduate students considering whether to pursue a research role in industry.

Can computational linguists find a home in the technology industry?

Alexa senior applied scientist provides career advice to graduate students considering a research role in industry.

Editor’s Note: Christos Christodoulopoulos is a senior applied scientist within the Alexa Knowledge team based in Cambridge, UK. His research focuses on knowledge extraction, knowledge graph question answering and fact verification. Christodoulopoulos joined Amazon in 2016 as a research scientist — his first non-academic position.

His background is in computational linguistics: the study of human language using computational methods. After earning his undergraduate degree in digital systems and technology education, Christodoulopoulos obtained his master’s degree in computational linguistics at the University of Edinburgh, with a thesis on computational models for linguistic phenomena like entailment and polarity.

Christos Christodoulopoulos, senior applied scientist, Alexa Knowledge team, at Cambridge in the UK.
Christos Christodoulopoulos

His doctoral research focused on the underlying structure of syntactic categories across languages and how (or if) they relate to semantic primitives. During his post-doctoral work at the University of Illinois at Urbana-Champaign, Christodoulopoulos worked on computational models of child language acquisition (based on the Syntactic Bootstrapping hypothesis) and machine-learning models for extending semantic role labeling (SRL). In the article below, Christodoulopoulos, who has transitioned from more theoretical research on language to more applied research on knowledge extraction, shares his advice on how young researchers can transition to an industry research position.

A friend who teaches at Cornell recently asked me to share career advice for graduate students who are deciding whether they want to work in industry. He teaches natural language processing and computational linguistics. Some of his students come from a traditional (non-computational) linguistics background and wanted to know whether there are career paths for them within the technology industry. Having not had any industry experience before joining Amazon, I tried to think of advice I wish someone had given me when I first started. Here’s what I shared:

Internships:

Former Amazon interns offer their advice

We asked some recent science interns (and PhD students) what advice they’d give to fellow future interns — here’s what they told us.

  • Pursue more than one internship, if possible. Try different companies or research groups. Find projects that lie just beyond your current research — close enough to hit the ground running and finish within three to six months, but challenging enough that you learn something new.
  • During your internship talk to as many people as possible: start with your interview (I decided to accept my current position after my conversation with two of my panel members), arrange 1:1s with other team members/leaders, attend talks, seminars, reading groups, and other activities that provide a more multi-disciplinary perspective.

Research:

  • Consciously expand your research to other areas, or use other tools than the ones you’re using in your day-to-day research.
  • For writing both academic and industry research papers, try to think about the implications of your work. What will the reader take away? Can they incorporate your findings into their work? ("Our system performs x% better than our competitors" is not a finding) Would your paper/work be relevant in six months, two years, or even five years? At Amazon, we use a working backwards model where we start from a customer need and work our way back to the solution — this gives us the confidence that the problem/end state is important, even if the solution changes.
  • Review research papers for as many conferences as you can. Try to gain a sense of the quality — and breadth —of work in your area. Read other reviewers' comments. See what they spotted and what they missed (or chose not to mention). Be respectful in your comments, but don't shy away from pointing out issues that stand out. Be constructive in your criticism and try to offer counter examples or suggestions for improvements. Try to highlight the positives of the work, focusing on what the community can learn from it. Always include an executive summary for the area chair (they will thank you).
  • Don't confuse tools with ways of thinking about a problem. If I ask you how you would solve sentiment analysis, BERT isn't an answer. Think of the underlying reason why such a technique would work, and try to generalize it. A company will not hire you because you're an expert in a tool/technique — you need to show you can learn a new one when the first one goes out of style (or better yet, develop the new one).
  • Be frugal with your resources. Do you need this amount of computation? This much data? How much effort would it take to transfer to other languages? What can the typological differences between languages tell us about the potential to generalize the model? This is academia's edge over industry.
  • Try to collaborate with other researchers as you pursue your PhD. Learn how to share the workload, but also resources like code and data. Use this opportunity to develop best practices for version control, code commenting, lab notes, and unit testing.

Career:

  • Before starting your PhD journey (or during the first year or so) decide if the academic model of research is for you. Getting a PhD is a long, arduous process (especially in the US) and can be very lonely even within a big research lab — the end state of your studies after all, is to be the sole expert in your (admittedly tiny) research area. If the extreme focus on a tiny sub-area isn't your thing, that’s OK — you can usually convert the first couple of years of your PhD into a master’s. Most research positions require a PhD, even though some companies will hire researchers with master’s degrees.
  • Pursuing a PhD is a long process, but it provides the opportunity to demonstrate what research can be. As my advisor used to say, a PhD is just a "driver's license for research". In retrospect, this was when I had the most time to work on ideas that excited me, and discover as much about my field as I could. Even if your thesis is on a very narrow topic make sure you get a chance to expand your research horizons by collaborating with other students on their projects, or simply during your literature review.
  • As my advisor used to say, a PhD is just a 'driver's license for research'.
    Christos Christodoulopoulos
    Idea-led vs. product-led research: there are a number of industry research groups that operate much more similarly to an academic research lab (where the main output is publications, data sets, and models), whereas others (including Amazon) focus on products/customers. This doesn't mean you won't get to publish — rather that you follow a product-driven, grounded approach instead of an idea-driven one — see our science website for examples. I have come to love working on product-led research for two reasons: first, you have a tangible impact on customers' lives (and you get to brag to your family and friends!); and second, it forces you to deal with the scale and “messiness” of real-world data. For me, this means dealing with language as it is, rather than as I would like it be.
  • Learn good administration practices. Look at how big companies organize their teams and programs (for example, Scrum and Kanban). Learn what makes a good meeting and adopt a meeting code of conduct (ask for an agenda, try to ensure everyone is heard, take notes and share).
  • Be a good teammate and eventually leader. Unfortunately, academics are never taught management skills (people or project), and not everyone is a natural team player or leader. Be aware of your unconscious biases, be self-critical, and earn trust. If you aren’t sure if you should take management courses (I haven't), try to observe how management is done around you, and learn from what works and what doesn't. I have found that Amazon’s list of leadership principles make for excellent day-to-day guidelines (even for non-managers like me).  

Non-computational disciplines:

  • The big technology companies — and a lot of start-ups — are interested in non-computational linguists. The difference is whether the positions offered are research/publications-oriented, or more engineering/analysis focused. At Amazon we have a number of roles like Language Engineer, Language Data Researcher, Data Linguist, Data Associate that consider linguists without computational background as candidates (data handling and scripting skills are required though — see below). You can also meet some of the Amazonians in these positions by visiting the Alexa AI team page, and clicking on Kat, Melanie, or Saumil.
  • Coding in Python is vital, even for non-computational linguists. It's steadily replacing R as the default data analysis language and it's very versatile in that it can be used from hacky scripts all the way to production systems (and of course it's the language of deep nets). Take programming courses and try to participate in Kaggle competitions or other shared challenges in your area. Our recent FEVER challenge is a good example of a standalone competition that requires a big chunk of the standard NLP pipeline

I hope you find this advice of use, and wish that your career journey is as challenging and rewarding as mine has been. As extra homework, I highly recommend reading Chris Manning’s excellent position paper “Computational Linguists and Deep Learning” from the column “Last Words” of the Computational Linguistics Journal. In his article in the same column, my PhD advisor Mark Steedman writes: “Human knowledge is expressed in language. So computational linguistics is very important.”

Research areas

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.