Christos Christodoulopoulos seated at a desk with a computer.
Christos Christodoulopoulos is a senior applied scientist with the Alexa Knowledge team based in Cambridge, UK. In this article, he provides career advice to computational linguistics' graduate students considering whether to pursue a research role in industry.

Can computational linguists find a home in the technology industry?

Alexa senior applied scientist provides career advice to graduate students considering a research role in industry.

Editor’s Note: Christos Christodoulopoulos is a senior applied scientist within the Alexa Knowledge team based in Cambridge, UK. His research focuses on knowledge extraction, knowledge graph question answering and fact verification. Christodoulopoulos joined Amazon in 2016 as a research scientist — his first non-academic position.

His background is in computational linguistics: the study of human language using computational methods. After earning his undergraduate degree in digital systems and technology education, Christodoulopoulos obtained his master’s degree in computational linguistics at the University of Edinburgh, with a thesis on computational models for linguistic phenomena like entailment and polarity.

Christos Christodoulopoulos, senior applied scientist, Alexa Knowledge team, at Cambridge in the UK.
Christos Christodoulopoulos

His doctoral research focused on the underlying structure of syntactic categories across languages and how (or if) they relate to semantic primitives. During his post-doctoral work at the University of Illinois at Urbana-Champaign, Christodoulopoulos worked on computational models of child language acquisition (based on the Syntactic Bootstrapping hypothesis) and machine-learning models for extending semantic role labeling (SRL). In the article below, Christodoulopoulos, who has transitioned from more theoretical research on language to more applied research on knowledge extraction, shares his advice on how young researchers can transition to an industry research position.

A friend who teaches at Cornell recently asked me to share career advice for graduate students who are deciding whether they want to work in industry. He teaches natural language processing and computational linguistics. Some of his students come from a traditional (non-computational) linguistics background and wanted to know whether there are career paths for them within the technology industry. Having not had any industry experience before joining Amazon, I tried to think of advice I wish someone had given me when I first started. Here’s what I shared:

Internships:

Former Amazon interns offer their advice

We asked some recent science interns (and PhD students) what advice they’d give to fellow future interns — here’s what they told us.

  • Pursue more than one internship, if possible. Try different companies or research groups. Find projects that lie just beyond your current research — close enough to hit the ground running and finish within three to six months, but challenging enough that you learn something new.
  • During your internship talk to as many people as possible: start with your interview (I decided to accept my current position after my conversation with two of my panel members), arrange 1:1s with other team members/leaders, attend talks, seminars, reading groups, and other activities that provide a more multi-disciplinary perspective.

Research:

  • Consciously expand your research to other areas, or use other tools than the ones you’re using in your day-to-day research.
  • For writing both academic and industry research papers, try to think about the implications of your work. What will the reader take away? Can they incorporate your findings into their work? ("Our system performs x% better than our competitors" is not a finding) Would your paper/work be relevant in six months, two years, or even five years? At Amazon, we use a working backwards model where we start from a customer need and work our way back to the solution — this gives us the confidence that the problem/end state is important, even if the solution changes.
  • Review research papers for as many conferences as you can. Try to gain a sense of the quality — and breadth —of work in your area. Read other reviewers' comments. See what they spotted and what they missed (or chose not to mention). Be respectful in your comments, but don't shy away from pointing out issues that stand out. Be constructive in your criticism and try to offer counter examples or suggestions for improvements. Try to highlight the positives of the work, focusing on what the community can learn from it. Always include an executive summary for the area chair (they will thank you).
  • Don't confuse tools with ways of thinking about a problem. If I ask you how you would solve sentiment analysis, BERT isn't an answer. Think of the underlying reason why such a technique would work, and try to generalize it. A company will not hire you because you're an expert in a tool/technique — you need to show you can learn a new one when the first one goes out of style (or better yet, develop the new one).
  • Be frugal with your resources. Do you need this amount of computation? This much data? How much effort would it take to transfer to other languages? What can the typological differences between languages tell us about the potential to generalize the model? This is academia's edge over industry.
  • Try to collaborate with other researchers as you pursue your PhD. Learn how to share the workload, but also resources like code and data. Use this opportunity to develop best practices for version control, code commenting, lab notes, and unit testing.

Career:

  • Before starting your PhD journey (or during the first year or so) decide if the academic model of research is for you. Getting a PhD is a long, arduous process (especially in the US) and can be very lonely even within a big research lab — the end state of your studies after all, is to be the sole expert in your (admittedly tiny) research area. If the extreme focus on a tiny sub-area isn't your thing, that’s OK — you can usually convert the first couple of years of your PhD into a master’s. Most research positions require a PhD, even though some companies will hire researchers with master’s degrees.
  • Pursuing a PhD is a long process, but it provides the opportunity to demonstrate what research can be. As my advisor used to say, a PhD is just a "driver's license for research". In retrospect, this was when I had the most time to work on ideas that excited me, and discover as much about my field as I could. Even if your thesis is on a very narrow topic make sure you get a chance to expand your research horizons by collaborating with other students on their projects, or simply during your literature review.
  • As my advisor used to say, a PhD is just a 'driver's license for research'.
    Christos Christodoulopoulos
    Idea-led vs. product-led research: there are a number of industry research groups that operate much more similarly to an academic research lab (where the main output is publications, data sets, and models), whereas others (including Amazon) focus on products/customers. This doesn't mean you won't get to publish — rather that you follow a product-driven, grounded approach instead of an idea-driven one — see our science website for examples. I have come to love working on product-led research for two reasons: first, you have a tangible impact on customers' lives (and you get to brag to your family and friends!); and second, it forces you to deal with the scale and “messiness” of real-world data. For me, this means dealing with language as it is, rather than as I would like it be.
  • Learn good administration practices. Look at how big companies organize their teams and programs (for example, Scrum and Kanban). Learn what makes a good meeting and adopt a meeting code of conduct (ask for an agenda, try to ensure everyone is heard, take notes and share).
  • Be a good teammate and eventually leader. Unfortunately, academics are never taught management skills (people or project), and not everyone is a natural team player or leader. Be aware of your unconscious biases, be self-critical, and earn trust. If you aren’t sure if you should take management courses (I haven't), try to observe how management is done around you, and learn from what works and what doesn't. I have found that Amazon’s list of leadership principles make for excellent day-to-day guidelines (even for non-managers like me).  

Non-computational disciplines:

  • The big technology companies — and a lot of start-ups — are interested in non-computational linguists. The difference is whether the positions offered are research/publications-oriented, or more engineering/analysis focused. At Amazon we have a number of roles like Language Engineer, Language Data Researcher, Data Linguist, Data Associate that consider linguists without computational background as candidates (data handling and scripting skills are required though — see below). You can also meet some of the Amazonians in these positions by visiting the Alexa AI team page, and clicking on Kat, Melanie, or Saumil.
  • Coding in Python is vital, even for non-computational linguists. It's steadily replacing R as the default data analysis language and it's very versatile in that it can be used from hacky scripts all the way to production systems (and of course it's the language of deep nets). Take programming courses and try to participate in Kaggle competitions or other shared challenges in your area. Our recent FEVER challenge is a good example of a standalone competition that requires a big chunk of the standard NLP pipeline

I hope you find this advice of use, and wish that your career journey is as challenging and rewarding as mine has been. As extra homework, I highly recommend reading Chris Manning’s excellent position paper “Computational Linguists and Deep Learning” from the column “Last Words” of the Computational Linguistics Journal. In his article in the same column, my PhD advisor Mark Steedman writes: “Human knowledge is expressed in language. So computational linguistics is very important.”

Research areas

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
CA, BC, Vancouver
Have you ever wondered how Amazon predicts delivery times and ensures your orders arrive exactly when promised? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's multimodal logistics network that includes planes, trucks, and vans sound exciting to you? Are you interested in developing Generative AI solutions using state-of-the-art LLM techniques to revolutionize how Amazon optimizes the fulfillment of millions of customer orders globally with unprecedented scale and precision? If so, then we want to talk with you! Join our team to apply the latest advancements in Generative AI to enhance our capability and speed of decision making. Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfillment Optimization owns and operates optimization, machine learning, and simulation systems that continually optimize the fulfillment of millions of products across Amazon’s network in the most cost-effective manner, utilizing large scale optimization, advanced machine learning techniques, big data technologies, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing, and supply. The team has embarked on its Generative AI to build the next-generation AI agents and LLM frameworks to promote efficiency and improve productivity. We’re looking for a passionate, results-oriented, and inventive machine learning scientist who can design, build, and improve models for our outbound transportation planning systems. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML / AI solutions to solve those problems at scale. You will work independently in an ambiguous environment while collaborating with cross-functional teams to drive forward innovation in the Generative AI space. Key job responsibilities * Design, develop, and evaluate tailored ML/AI, models for solving complex business problems. * Research and apply the latest ML / AI techniques and best practices from both academia and industry. * Identify and implement novel Generative AI use cases to deliver value. * Design and implement Generative AI and LLM solutions to accelerate development and provide intuitive explainability of complex science models. * Develop and implement frameworks for evaluation, validation, and benchmarking AI agents and LLM frameworks. * Think about customers and how to improve the customer delivery experience. * Use analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life You will have the opportunity to learn how Amazon plans for and executes within its logistics ne twork including Fulfillment Centers, Sort Centers, and Delivery Stations. In this role, you will design and develop Machine Learning / AI models with significant scope, impact, and high visibility. You will focus on designing, developing, and deploying Generative AI solutions at scale that will improve efficiency, increase productivity, accelerate development, automate manual tasks, and deliver value to our internal customers. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide at a scale that is unique to Amazon. We own the long-term and intermediate-term planning of Amazon’s global fulfillment centers and transportation network as well as the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfillment network. FPX science team is a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across SCOT - Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We disambiguate complex supply chain problems and create innovative data-driven solutions to solve those problems at scale with a mix of science-based techniques including Operations Research, Simulation, Machine Learning, and AI to tackle some of our biggest technical challenges. In addition, we are incorporating the latest advances in Generative AI and LLM techniques in how we design, develop, enhance, and interpret the results of these science models.
US, WA, Bellevue
Amazon LEO is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. The Amazon LEO Infrastructure Data Engineering, Analytics, and Science team owns designing, implementing, and operating systems/models that support the optimal demand/capacity planning function. We are looking for a talented scientist to implement LEO's long-term vision and strategy for capacity simulations and network bandwidth optimization. This effort will be instrumental in helping LEO execute on its business plans globally. As one of our valued team members, you will be obsessed with matching our standards for operational excellence with a relentless focus on delivering results. Key job responsibilities In this role, you will: Work cross-functionally with product, business development, and various technical teams (engineering, science, R&D, simulations, etc.) to implement the long-term vision, strategy, and architecture for capacity simulations and inventory optimization. Design and deliver modern, flexible, scalable solutions to complex optimization problems for operating and planning satellite resources. Contribute to short and long terms technical roadmap definition efforts to predict future inventory availability and key operational and financial metrics across the network. Design and deliver systems that can keep up with the rapid pace of optimization improvements and simulating how they interact with each other. Analyze large amounts of satellite and business data to identify simulation and optimization opportunities. Synthesize and communicate insights and recommendations to audiences of varying levels of technical sophistication to drive change across LEO. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.