David Schuster and colleagues' Nature 2004 paper (left) "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics" helped spawn a new field, circuit quantum electrodynamics. Schuster and colleagues' American Physical Society 2007 paper (right) "Charge-insensitive qubit design derived from the Cooper pair box", introduced a new type of superconducting quantum circuit.
David Schuster and colleagues' Nature, 2004, paper (left) "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics" helped spawn a new field, circuit quantum electrodynamics. Schuster and colleagues' American Physical Society, 2007, paper (right) "Charge-insensitive qubit design derived from the Cooper pair box", introduced a new type of superconducting quantum circuit.

David Schuster’s quest to make practical quantum computers a reality

With quantum computers poised to take a big step forward, we speak to an Amazon Scholar who has spent two decades driving the technology to realize its enormous potential.

To become a foundational player in the creation of a potentially world-changing technology requires the happy conjunction of talent and timing. Both can be found in physicist David Schuster, who is pioneering the technology underpinning quantum computers.

Amazon Scholar David Schuster is seen inside his lab
Amazon Scholar David Schuster joined the AWS Center for Quantum Computing in October 2020.

Schuster became an Amazon Scholar in October 2020, joining the newly established AWS Center for Quantum Computing. Passionate about computers and physics, it was during Schuster’s undergrad studies at Brown University in the early 2000s that he became aware of the nascent field of quantum computing.

“As soon as I heard about it, I was taken with the idea that I could be involved in building a completely new type of computer,” says Schuster. He saw this chance for what it was, a colossal stroke of right-place-right-time good fortune. “The opportunity to make an impact at such a fundamental level was very exciting.”

To appreciate why quantum computing has such potential, compare it to regular, or “classical”, computers. A classical computer uses digital bits to perform computations, with each bit representing either 0 or 1 at any given time. In simplistic terms, increasing the number of bits available to interact with each other increases the computational power of a computer in an additive, linear fashion. A top-end laptop will boast 32 gigabytes of RAM, which is 256,000,000,000 bits.

Related content
New phase estimation technique reduces qubit count, while learning framework enables characterization of noisy quantum systems.

A quantum computer, by contrast, uses quantum bits (qubits) to perform calculations. Each qubit can be in a simultaneously 0 and 1 at any given time. As a result of this “quantum superposition” – which only occurs at the tiniest scales – increasing the qubits results in an exponential explosion in computational power. It is estimated that a fully functional quantum computer with as little as 100 qubits could outsmart today’s most powerful supercomputers for appropriately chosen problems.

Because of the tiny scale and extreme conditions at which qubits exist, it is very difficult to create and control them, but they can nevertheless be made by harnessing a variety of quantum particles, including charged atoms, the directional spin of electrons, and photons.

But it was an experiment published just as Schuster entered grad school at Yale University that demonstrated that a superconducting circuit could be turned into a qubit, though the quantum effect lasted for less than a nanosecond. “In those early days there was a small number of people working in the field,” he recalls, “and a fundamental question was whether you could even make a circuit quantum. They were able to see it as a direct observation!”

Our approach was unique in that we leveraged powerful ideas from atomic physics and mapped them onto circuits, to build circuits that behaved like atoms
David Schuster

Duly inspired, during his PhD research in physics at Yale, Schuster and his colleagues had bold ideas about how to improve the quantum circuit and create new ways of measuring its quantum state. “Our approach was unique in that we leveraged powerful ideas from atomic physics and mapped them onto circuits, to build circuits that behaved like atoms.”

The circuit-based qubit they created contained cavities and could trap and interact, or couple, with a single microwave photons to create a two-level quantum system, with the levels representing 0s and 1s. Published in Nature in 2004, the landmark paper helped to create a new field — circuit quantum electrodynamics.

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

Using such circuits as the basis of a qubit has many benefits, says Schuster. One of those is that the cavities help to protect the fragile quantum state against external interference while also allowing the qubits to interact strongly with each other, which is essential for computation.

In 2007, Schuster and his colleagues published another landmark paper, this time in Physical Review A. In it, they introduced a new type of superconducting quantum circuit, coining the term “transmon”. More cunning physics had resulted in a drastic reduction in sensitivity to external noise and an increase in the qubit-photon coupling, while maintaining the ability to control the qubits. The relatively simple transmon has become an industry standard, forming the basis of efforts at Amazon and other computing giants. Some consider the transmon the “transistor” of superconducting quantum computers.

In 2010, Schuster moved to the University of Chicago, where he set up his lab, which explores and develops a range of quantum technologies. This year, for example, the Schuster Lab team published research revealing what they dubbed a “quantum flute”, a piece of hardware able to control multiple microwave photons simultaneously. The team called the work an important step towards efficient quantum RAM and quantum processors.

A tour of David Schuster's quantum computing lab

This year, Schuster is moving to the applied physics department at Stanford University, with the rest of his lab joining him there in 2023. For the rest of 2022, however, most of Schuster’s time will be spent working at the Center for Quantum Computing.

One of the key challenges of quantum systems is that quantum states are incredibly fragile. Consider a regular computer, in which a single bit might consist of a billion electrons sloshing back and forth, with their location representing a 0 or a 1.

“If some electrons get lost, that’s OK. And redundancy is built in. But in the case of a qubit, there’s just one photon and no redundancy,” says Schuster. “And beside the possibility of losing the photon altogether, the slightest noise from the environment can disturb the quantum superposition, creating errors.” This risk of noise is one of the reasons quantum computing typically requires superconducting materials and temperatures very near absolute zero to operate at all.

And the fact that quantum states can only be maintained for a very brief time compounds the error problem.

Related content
The head of Amazon Web Services’ quantum communication program on the Nobel winners’ influence on her field.

“I like to joke that my goal is to make qubits last for the blink of an eye,” says Schuster. Right now, state-of-the-art devices with multiple qubits might boast decoherence times of around 100 microseconds (0.0001 seconds), he says.

Decoherence means the loss of the fragile quantum state. This loss of information results in small computation errors that can quickly multiply, potentially making any output useless. And the more qubits in play, the more quickly errors can accumulate. With leading quantum processors currently containing up to a few hundred qubits (of a variety of natures), we are in what Caltech theoretical physicist and Amazon Scholar John Preskill termed the “noisy intermediate-scale quantum” (NISQ) era.

“By the time we get about 100 qubits interacting with each other, the errors become so great you can't really do much, so there's no point making a 1000-qubit system yet,” says Schuster.

Decoherence is a tractable problem, though, and it is being relentlessly addressed by researchers including Schuster and members of his lab. Fortunately, however, decoherence does not need to be totally overcome before quantum computers can successfully scale up.

Already, the accuracy of the qubits in Schuster’s quantum systems is well over 99%. In fact, as a scientific field the accuracy is getting so high that a threshold is approaching, says Schuster, beyond which sophisticated error-correcting algorithms will be able to counteract the remaining problems caused by the fragility of the qubits.

Related content
How an Amazon quantum computing scientist won the first-ever quantum chess tournament.

“Once we get our error rate low enough, scaling up will actually result in even fewer errors,” he says. “Amazon's effort is focused on getting to this goal of error correction, because then we can truly make a large-scale quantum computer.”

Schuster is two decades into his quantum journey. Is it getting any easier?

“When I started it all felt impossible, but we just tried it anyway,” he says. “Now, the problems no longer necessarily seem impossible, but they are still extremely difficult.”

So why join Amazon now?

Amazon’s efforts are experimental and bold — they are trying different approaches. I think Amazon understands the true magnitude of the challenge and the ultimate value of quantum computing.
David Schuster

“The quality of the team was very appealing,” he says, “and Amazon’s efforts are experimental and bold — they are trying different approaches. I think Amazon understands the true magnitude of the challenge and the ultimate value of quantum computing to their customers through Amazon Web Services, so they are patient.”

It is well known that the arrival of quantum computing will have enormous implications for online security and encryption, because the highest levels of protection currently being employed to protect online data will not stand up to the sheer power of quantum computers. Quantum computing will bring with it uncrackable encryption.

Security implications aside, what other useful applications might we expect? There are entire classes of scientific problems that are intractable to classical computers that should succumb to quantum efforts, says Schuster. He is personally excited about the potential to better understand materials in which quantum mechanics plays an important role.

“Many special materials involve complex quantum interactions that we don't understand and, right now, about 30% of supercomputer capacity goes to solving quantum mechanical problems,” he says.

It is inefficient to solve quantum mechanical problems on a classical computer, he adds. “Very small quantum systems that involve 20 particles or states, you could maybe solve on a laptop. But if it involves 50, even the world's biggest supercomputer can't really do very much with it.”

Such research carried out on quantum computers could have big impacts on the discovery of new materials for renewable energy, computing, chemistry, medicines, and more.

There are also some surprising possibilities for Schuster’s quantum circuits.

“I never would have expected this, but I ended up getting involved in searching for dark matter,” he says. There is a type of proposed dark matter — low mass bosons — that would occasionally interact with ordinary matter, resulting in the production of a single microwave photon. And as luck would have it, Schuster’s qubit circuits are able to trap and measure these photons.

“We can use our qubits to detect these newly created photons,” he explains, “making the search for this type of dark matter about 1000 times faster!”

Research areas

Related content

US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
CA, ON, Toronto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.