elena2.png
Elena Ehrlich, a principal data scientist at Amazon Web Services, works on, among other things, time-series modeling. It was her work in that area that caught the attention of the National Football League, which led to a new passing metric.

Using data science to help improve NFL quarterback passing scores

Principal data scientist Elena Ehrlich uses her skills to help a wide variety of customers — including the National Football League.

In any given month as a principal data scientist at Amazon Web Services (AWS), Elena Ehrlich might be working on time-series modeling, a computer vision project, a natural language processing problem, and more. Her work within the AWS Professional Services organization involves solving data problems for customers in fields ranging from media to energy to sports.

Spliced binned-Pareto distributions, developed in part by Elena Ehrlich, are flexible enough to handle symmetric, asymmetric, and multimodal distributions, offering a more consistent metric.

Sometimes a customer has a particular model in mind and will consult with Ehrlich's team to build or refine it. Often, though, they are not so far along. They simply have a business problem to solve. Ehrlich works with them anywhere from two months to three years to develop a solution that the client can then maintain going forward.

Ehrlich likes the ability to apply data science across a variety of verticals without having to switch jobs, or even teams.

"Amazon has a large and diverse landscape of customers, so I can gain a lot of different domain knowledge," Ehrlich says. "Each customer's needs are unique, which makes it very interesting, and the challenge is to come up with solutions that can be reused by other customers as well.”

Better predictions for spiky time series

Ehrlich's work with the NFL is one example of science applied to business challenges. Independent of her team's existing work with the league, she and colleagues developed a method for modeling heavy-tailed time series. In these sequences, one can have dramatic, unpredictable spikes: Think extreme rainfall events that shape totals over the course of a year, or a product suddenly going viral, increasing demand.

An NFL Next Gen Stats video screengrab shows Rams quarterback Matthew Stafford preparing to make a pass
The NFL's new Passing Score was developed using Ehrlich's Spliced Binned-Pareto method. It can place a quarterback's performance, such as that of Matthew Stafford, within the context of expected performance across the league.

Many statistical methods that would perform fine on more uniform curves falter when it comes to the noise of heavy-tailed time series. Yet being able to characterize these tails is important. On an EKG, for instance, you must be able to tell whether a peak in heart rate signals disease or simply the beginning of a workout.

Predictive models were not able to reliably pinpoint such anomalies. Over the course of a few months, Ehrlich and Amazon researchers Francois-Xavier Aubet and Laurent Callot developed a solution, which they presented at the 2021 International Conference on Learning Representations' RobustML Workshop.

"If you're seeing an issue from a few customers, then it's worth zooming out, solving it as a research problem, and then going back to examine to which customers this can apply," Ehrlich said.

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

Their solution, the Spliced Binned-Pareto method, combines two statistical techniques, the binned and the Pareto distributions. The latter stems from Italian economist Vilfredo Pareto's 80/20 rule: The 1920s idea that 80% of outcomes emerge from 20% of the causes (most of a country's wealth attributable to a fifth of its population, for example). This power-law relationship, when generalized, delivered the Second Theorem of Extreme Value Theory in 1975, which states that any and all distribution tails can be well approximated by a Generalized Pareto Distribution.

The researchers combined this with binned distribution, which discretizes regions within a larger dataset. Their method effectively cordons off and zeroes in on the spikes within a time series, leading to an improved ability to accommodate these extremes and calibrate estimates of them over time, which in turn leads to more accurate heavy-tail predictions.

This work aligned with a request from the NFL. While quarterback ratings exist in various forms, the league wanted a metric to rate passing performance. But a meaningful passing metric had to extend beyond passing yards, touchdowns, and interceptions to reflect the degree of difficulty for those outcomes given the specific play’s circumstances, in order to evaluate the NFL quarterback’s performance.

In January, the National Football League announced its new QB passing score, which addressed the inconsistency across plays, games, weeks, and seasons found in previous scores. A method based on spliced binned-Pareto distributions, developed by Amazon researchers, led to the improved passing metric.

The resulting NFL Passing Score, developed using Ehrlich's Spliced Binned-Pareto method, can place a quarterback's performance within the context of expected performance across the league.

That's because it is capable of estimating that heavy tail — in this case, those exceptional moments in a quarterback's throw — and assign them the proper weight toward the overall score. The NFL debuted the Passing Score early this year, ahead of the Super Bowl. Perhaps not surprisingly, Green Bay Packers quarterback Aaron Rodgers had the highest score.

An early affinity for math

Though the Passing Score project is complete, Ehrlich continues to refine the Spliced Binned-Pareto distribution, among other facets of her work.

"You want to forge a team to be at the leading edge of industry," she says. "Leading edge is determined by how short the lag is between your academic progress and marketplace usage."

Ehrlich has bachelor's and master's degrees in mathematics and a doctorate degree in statistics, all from Imperial College London — a school she chose in part because its program allowed her to focus solely on mathematics from her first year of university.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

The predilection toward math and science runs in the family: Ehrlich's father is a mathematician, her mother a physicist. Numbers were a part of childhood, growing up in New Jersey. On skiing trips, she recalls, her father would point out the numbers on chair lifts and challenge her to factor them or shout "prime." If she got them all right, she'd get a candy reward.

"I thought these were fun games," Ehrlich says.

Ehrlich is glad to have had a singular focus on mathematics from undergrad onward.

"My career is where I went to get breadth and width, but it was really helpful to have this depth," she says. "It helps me learn faster when I get to a new domain or application, just having the technical strength."

'Genuinely excited about the problems'

Ehrlich embarked on her PhD, which focused on state-space models with applications for aerospace and missile tracking, thinking she would stay in academia. But as she completed the work in 2014, she knew there was an emerging job market for skills like hers.

"The real world had an appreciation for methodologies that weren't exactly instant," she says. "It takes some time to research good solutions and test out their longevity and experiment their generalizability."

She held research scientist positions at companies including IBM and Winton Capital Management before joining Amazon in 2017. Heading to Seattle headquarters, she prepared for some housekeeping-type meetings. She was surprised to find opportunities to sign up for dev ops and other classes related to Amazon technology. It felt like being back at university, she says, in a good way. The culture reflects this drive to learn; in fact, one of the company’s leadership principles is “learn and be curious.”

Related content
Amazon's Daliana Liu helps others in the field chart their own paths.

"People that come to work here are genuinely excited about the problems," she says. "It makes for more data-driven conversation based on the problem at hand. That intersects with the fact that since Amazon is big with a wide-range of opportunities, it attracts a lot of top talent."

An early project for Ehrlich focused on 21st Century Fox. She developed and implemented an optimized Ad Sales Pricing platform for the company's advertising time spots, horizontally scaling to match potential advertisers with spots across millions of opportunities. Working with sales and engineering teams, she moved the algorithm into production, boosting revenue for Fox.

For students who are interested in a career like Ehrlich's, she recommends starting with first principles and then confirming that understanding with actual projects.

"You should have some corner of theory really well understood. Then iterate between knowing something and implementing it — it doesn't even matter how small," she says. "This is a very fast, but very solid, way to grow."

Research areas

Related content

US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, IL, Chicago
Do you want to use your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If you do, People eXperience Technology Central Science (PXTCS) would love to talk to you about how to make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that both improve Amazonian’s wellbeing and their ability to deliver value for Amazon’s customers. We work with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. As an applied scientist on our team, you will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, define the science vision and translate it into specific plans for applied scientists, as well as engineering and product teams. You will partner with scientists, economists, and engineers on the design, development, testing, and deployment of scalable ML and econometric models. This is a unique, high visibility opportunity for someone who wants to have impact, dive deep into large-scale solutions, enable measurable actions on the employee experience, and work closely with scientists and economists. This role combines science leadership, organizational ability, and technical strength. Key job responsibilities As an Applied Scientist, ML Applications, you will: • Design, develop, and evaluate innovative machine learning solutions to solve diverse challenges and opportunities for Amazon customers • Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Partner with the engineering team to deploy your models in production. • Partner with scientists from across PXTCS to solve complex problems and use your team’s expertise to accelerate their ability get their work into production. • Work directly with Amazonians from across the company to understand their business problems and help define and implement scalable ML solutions to solve them.
US, CA, Sunnyvale
Amazon.com strives to be Earth's most customer-centric company where people can find and discover anything they want to buy online. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Are you seeking an environment where you can drive innovation? Do you want to apply learning techniques and advanced mathematical modeling to solve real world problems? Do you want to play a key role in the future of Amazon's Retail business? This job for you! The Customer Behavior Analytics (CBA) team at Amazon is responsible for the architecture, design, implementation of tools used to understand customer behavior and value generation for all Amazon programs. Our vision is to ensure that every decision at Amazon is customer-obsessed and maximizes long-term free cash flow (LTFCF). To achieve this we build the best, unbiased and most trusted measures of incremental customer long-term value and make them universally adopted as the company standard for customer-obsessed decisions. Come and join us! Amazon’s CBA team is looking for Economists, who can work at the intersection of economics, statistics and machine learning; and leverage the power of big data to solve complex problems like long-term causal effect estimation. Key job responsibilities Economists at Amazon are expected to work directly with other Economists and senior management on key business problems in retail, international retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. Amazon economists will apply the frontier of economic thinking to market design, pricing, forecasting, program evaluation, online advertising and other areas. You will build econometric models, using our world class data systems, and apply economic theory to solve business problems in a fast moving environment. Economists at Amazon will be expected to develop new techniques to process large data sets, build trust in the techniques with rigorous science and validation, address quantitative problems, and contribute to design of automated systems around the company.