Emine Yilmaz: An Amazon Scholar advancing the state of the art in voice shopping

Scientist leads team in London focused on improving voice-shopping experiences with Alexa.

Emine Yilmaz is a computer science professor at the University College London (UCL) and a faculty fellow at the Alan Turing Institute. Her research interests include information retrieval and natural language processing. Yilmaz is the recipient of several honors and awards in her career, including a 2018 Bloomberg Data Science Research grant for her work on building task-oriented systems, and a 2015 British Computer Society Information Retrieval Specialist Group Karen Spärck Jones Award for her research contributions in the field of information retrieval.

Emine Yilmaz, an Amazon scientist, sitting at a table with an open laptop in front of her.
Emine Yilmaz, a computer science professor at the University College London, a faculty fellow at the Alan Turing Institute, and an Amazon Scholar, is shown speaking at an Amazon Research Day event. At Amazon, Yilmaz works within the Alexa Shopping Research and Science organization.
Emine Yilmaz

Yilmaz is also an Amazon Scholar, a select group of academics who work on large-scale technical challenges for Amazon while continuing to teach and conduct research at their universities. At Amazon, Yilmaz is leading a research team based in London that’s responsible for improving the Alexa voice shopping experiences.

Given the nascency of the field—the first Echo speaker was launched six years ago—customer satisfaction in voice shopping is an open area of research. Yilmaz is uniquely positioned to drive meaningful innovations in the field. She has been involved with advancing research in modeling user behavior and predicting user satisfaction for her entire career. One example: a recent paper that Yilmaz coauthored with Manisha Verma, “Search Costs vs User Satisfaction on Mobile”, in which they studied the impact of user actions, such as inputting search queries, reading snippets, or scrolling through a search engine result page, on customer satisfaction.

Amazon Science spoke to Yilmaz about her career, her work at Amazon, and why she thinks academics will enjoy working at Amazon.

Q. What drew you to your research interests in information retrieval and natural language processing?

My interest in machine learning was sparked during my undergraduate program. As part of an assignment for a computer science class, we had to implement a machine learning algorithm that would learn to put a number of small rectangles into the smallest rectangle shape possible. I found the concept of a computer being trained to perform tasks fascinating, and decided to pursue a master’s degree in machine learning.

When I began my PhD, web search technology was newly emerging. I was intrigued by how search engines were able to retrieve results relevant to a query in a near-instantaneous manner. There were, and there still are, many open problems in the domain, and nearly all of them can be tackled using principles from machine learning. I thus decided to choose as my area of research machine learning applied to information retrieval (the computer science discipline behind search) and natural language processing.

Q. What are you working on at Amazon?

At Amazon, I’m part of the Alexa Shopping Research and Science organization headed by Yoelle Maarek. Customers interact with Alexa for a variety of shopping-related tasks—from product research to actual purchases. My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.

Q. What are some of the research problems you’re tackling at Amazon?

Annotating customer interactions with pertinent data is critical to training Alexa to get better over time. However, with billions of interactions every week, it isn’t feasible to annotate even a small percentage of those interactions manually.

Further complicating matters is the growing number of experiences that Alexa-enabled devices provide. To give just a few examples, Alexa is available on a wide range of smart speakers, tablets, smartphones, and an ever-increasing array of smart home devices. A successful customer interaction on an Echo device (adding an item to one’s shopping list) can be quite different from that on a tablet (clicking and zooming in on an image).

My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.
Emine Yilmaz, Amazon Scholar

My team applies state-of-the-art natural language processing and machine learning models to predict customer satisfaction across all of these diverse experiences. To do this, our models look at implicit criteria to evaluate whether Alexa helped customers meet their goals. These criteria include search query reformulations, how much time customers spend interacting with search results, or even whether they zoomed in to study a product image in greater detail. By studying patterns in user interactions, we are able to drive improvements to the Alexa voice shopping experience at scale.

Q. How do you see the nascent field of voice shopping evolving?

These are early days for voice shopping. That’s one of the primary reasons this is a fascinating area to be involved with. Similar to mobile phones today, I believe that intelligent voice assistants will become an embedded part of our lives. Shopping using our voice is a much more frictionless experience. Most of us speak faster than we type. With voice agents, you don’t have to take your phone out, unlock it, type out a search term and take a series of steps to complete your request. To give just one example, today you see residents of senior living centers, who would ordinarily struggle using computers, but who are using Alexa to stay connected to friends, family, and the world during COVID-19. Intelligent voice agents are going to be an integral part of our day-to-day lives. I’m really excited to be at Amazon, and have the opportunity to shape the future in how people use voice to conduct research on, and buy products.

Q. How did you come to join the Amazon Scholars program?

I received a call from an Amazon recruiter in 2019, who told me about the Amazon Scholars program. This seemed really intriguing. Indeed, to say that the entire ecosystem around Alexa is cutting edge would be a massive understatement. I was excited at the opportunity to find out more about the kind of problems the team was working on, and to see if I could contribute to their research.

I was also impressed by the investments Amazon has been making in research. At the time, Amazon had recently opened the Cambridge Development Center. They were actively hiring great talent to further innovation in multiple AI disciplines.

Career opportunities in science

See the latest Amazon job openings in machine learning, data science, and much more.

Lastly, I was drawn to working with scientists I’ve always held in high regard —be it Michael Jordan, Thorsten Joachims or Eugene Agichtein. Some of the world’s leading researchers are working as Scholars at Amazon. And given my prior work and research area interests, I was particularly interested in the work of Yoelle Maarek’s team.

Q. How do you balance your work between Amazon and University College London?

At Alexa Shopping, I’m constantly encouraged to write and publish papers at the top research conferences, both within Amazon and at my university. It certainly helps that my research areas in academia and at Amazon are distinct yet aligned. To give just one example, as part of my academic work, I recently coauthored a paper, From Stances' Imbalance to Their Hierarchical Representation and Detection , that was presented at The Web Conference in 2019. In the paper, we proposed a new approach to detecting fake news—news that purports to be factual, but which contains misstatements of fact with intention to arouse passions, attract viewership, or simply deceive. On one hand, the paper is sufficiently distinct from shopping that I can differentiate between my work in academia and at Amazon. On the other hand, the research outlined in the paper can help me invent methods towards ensuring that sellers’ descriptions on product listings are accurate.

Q. In your mind, why would academics enjoy working at Amazon?

First, the caliber of talent at Amazon is very high. I attribute this to the hiring process based on a set of Leadership Principles. The hiring process is concrete and structured, and ensures that we are always meeting a high bar when it comes to recruitment. Because the bar for hiring is so high, I’m constantly learning from my managers, from my peers, and from people who report to me.

I also think academics will readily appreciate Amazon’s “customer obsession”, one of our key Leadership Principles. In my mind, this is the primary reason academics should consider working at the company. Throughout my career, when I’ve thought about research, I’ve also thought about the end application. At Amazon, you have the opportunity to have a positive impact on the lives of millions of people. Staying focused on the customer and working a solution backward makes our research a lot more fulfilling. It also keeps you grounded, and prevents you from drifting into irrelevance, both in academia and within the industry.

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.