Emine Yilmaz: An Amazon Scholar advancing the state of the art in voice shopping

Scientist leads team in London focused on improving voice-shopping experiences with Alexa.

Emine Yilmaz is a computer science professor at the University College London (UCL) and a faculty fellow at the Alan Turing Institute. Her research interests include information retrieval and natural language processing. Yilmaz is the recipient of several honors and awards in her career, including a 2018 Bloomberg Data Science Research grant for her work on building task-oriented systems, and a 2015 British Computer Society Information Retrieval Specialist Group Karen Spärck Jones Award for her research contributions in the field of information retrieval.

Emine Yilmaz, an Amazon scientist, sitting at a table with an open laptop in front of her.
Emine Yilmaz, a computer science professor at the University College London, a faculty fellow at the Alan Turing Institute, and an Amazon Scholar, is shown speaking at an Amazon Research Day event. At Amazon, Yilmaz works within the Alexa Shopping Research and Science organization.
Emine Yilmaz

Yilmaz is also an Amazon Scholar, a select group of academics who work on large-scale technical challenges for Amazon while continuing to teach and conduct research at their universities. At Amazon, Yilmaz is leading a research team based in London that’s responsible for improving the Alexa voice shopping experiences.

Given the nascency of the field—the first Echo speaker was launched six years ago—customer satisfaction in voice shopping is an open area of research. Yilmaz is uniquely positioned to drive meaningful innovations in the field. She has been involved with advancing research in modeling user behavior and predicting user satisfaction for her entire career. One example: a recent paper that Yilmaz coauthored with Manisha Verma, “Search Costs vs User Satisfaction on Mobile”, in which they studied the impact of user actions, such as inputting search queries, reading snippets, or scrolling through a search engine result page, on customer satisfaction.

Amazon Science spoke to Yilmaz about her career, her work at Amazon, and why she thinks academics will enjoy working at Amazon.

Q. What drew you to your research interests in information retrieval and natural language processing?

My interest in machine learning was sparked during my undergraduate program. As part of an assignment for a computer science class, we had to implement a machine learning algorithm that would learn to put a number of small rectangles into the smallest rectangle shape possible. I found the concept of a computer being trained to perform tasks fascinating, and decided to pursue a master’s degree in machine learning.

When I began my PhD, web search technology was newly emerging. I was intrigued by how search engines were able to retrieve results relevant to a query in a near-instantaneous manner. There were, and there still are, many open problems in the domain, and nearly all of them can be tackled using principles from machine learning. I thus decided to choose as my area of research machine learning applied to information retrieval (the computer science discipline behind search) and natural language processing.

Q. What are you working on at Amazon?

At Amazon, I’m part of the Alexa Shopping Research and Science organization headed by Yoelle Maarek. Customers interact with Alexa for a variety of shopping-related tasks—from product research to actual purchases. My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.

Q. What are some of the research problems you’re tackling at Amazon?

Annotating customer interactions with pertinent data is critical to training Alexa to get better over time. However, with billions of interactions every week, it isn’t feasible to annotate even a small percentage of those interactions manually.

Further complicating matters is the growing number of experiences that Alexa-enabled devices provide. To give just a few examples, Alexa is available on a wide range of smart speakers, tablets, smartphones, and an ever-increasing array of smart home devices. A successful customer interaction on an Echo device (adding an item to one’s shopping list) can be quite different from that on a tablet (clicking and zooming in on an image).

My team’s goal is to continually improve Alexa so that she is able to help customers no matter where they are in their shopping journey.
Emine Yilmaz, Amazon Scholar

My team applies state-of-the-art natural language processing and machine learning models to predict customer satisfaction across all of these diverse experiences. To do this, our models look at implicit criteria to evaluate whether Alexa helped customers meet their goals. These criteria include search query reformulations, how much time customers spend interacting with search results, or even whether they zoomed in to study a product image in greater detail. By studying patterns in user interactions, we are able to drive improvements to the Alexa voice shopping experience at scale.

Q. How do you see the nascent field of voice shopping evolving?

These are early days for voice shopping. That’s one of the primary reasons this is a fascinating area to be involved with. Similar to mobile phones today, I believe that intelligent voice assistants will become an embedded part of our lives. Shopping using our voice is a much more frictionless experience. Most of us speak faster than we type. With voice agents, you don’t have to take your phone out, unlock it, type out a search term and take a series of steps to complete your request. To give just one example, today you see residents of senior living centers, who would ordinarily struggle using computers, but who are using Alexa to stay connected to friends, family, and the world during COVID-19. Intelligent voice agents are going to be an integral part of our day-to-day lives. I’m really excited to be at Amazon, and have the opportunity to shape the future in how people use voice to conduct research on, and buy products.

Q. How did you come to join the Amazon Scholars program?

I received a call from an Amazon recruiter in 2019, who told me about the Amazon Scholars program. This seemed really intriguing. Indeed, to say that the entire ecosystem around Alexa is cutting edge would be a massive understatement. I was excited at the opportunity to find out more about the kind of problems the team was working on, and to see if I could contribute to their research.

I was also impressed by the investments Amazon has been making in research. At the time, Amazon had recently opened the Cambridge Development Center. They were actively hiring great talent to further innovation in multiple AI disciplines.

Career opportunities in science

See the latest Amazon job openings in machine learning, data science, and much more.

Lastly, I was drawn to working with scientists I’ve always held in high regard —be it Michael Jordan, Thorsten Joachims or Eugene Agichtein. Some of the world’s leading researchers are working as Scholars at Amazon. And given my prior work and research area interests, I was particularly interested in the work of Yoelle Maarek’s team.

Q. How do you balance your work between Amazon and University College London?

At Alexa Shopping, I’m constantly encouraged to write and publish papers at the top research conferences, both within Amazon and at my university. It certainly helps that my research areas in academia and at Amazon are distinct yet aligned. To give just one example, as part of my academic work, I recently coauthored a paper, From Stances' Imbalance to Their Hierarchical Representation and Detection , that was presented at The Web Conference in 2019. In the paper, we proposed a new approach to detecting fake news—news that purports to be factual, but which contains misstatements of fact with intention to arouse passions, attract viewership, or simply deceive. On one hand, the paper is sufficiently distinct from shopping that I can differentiate between my work in academia and at Amazon. On the other hand, the research outlined in the paper can help me invent methods towards ensuring that sellers’ descriptions on product listings are accurate.

Q. In your mind, why would academics enjoy working at Amazon?

First, the caliber of talent at Amazon is very high. I attribute this to the hiring process based on a set of Leadership Principles. The hiring process is concrete and structured, and ensures that we are always meeting a high bar when it comes to recruitment. Because the bar for hiring is so high, I’m constantly learning from my managers, from my peers, and from people who report to me.

I also think academics will readily appreciate Amazon’s “customer obsession”, one of our key Leadership Principles. In my mind, this is the primary reason academics should consider working at the company. Throughout my career, when I’ve thought about research, I’ve also thought about the end application. At Amazon, you have the opportunity to have a positive impact on the lives of millions of people. Staying focused on the customer and working a solution backward makes our research a lot more fulfilling. It also keeps you grounded, and prevents you from drifting into irrelevance, both in academia and within the industry.

Related content

  • Staff writer
    October 21, 2025
    Initiative will fund over 100 doctoral students researching machine learning, computer vision, and natural-language processing at nine universities.
  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!