senior applied science manager Ali Dashti stands outside with a cityscape in the background
Amazon's Internet Famous page is the brainchild of senior applied science manager Ali Dashti's Discovery Tech team. His team uses machine learning to help Amazon Store customers find new products.

How Ali Dashti helps advance the science behind marketing collections

The senior applied science manager envisions machine learning as the path to a better experience for Amazon customers.

Social media can have a big influence on the popularity of certain items. Take, for example, the LEGO Flower Bouquet Building Kit featured on the show Abbott Elementary or the "miracle cleaning paste" seen in millions of online videos. Both have picked up buzz from viral clips and sharing.

On Amazon's Internet Famous page, you can find these and many other products people are talking about — without all the video clips and scrolling. The collection is the brainchild of Ali Dashti's Discovery Tech team, which helps connect shoppers at the Amazon Store with the new and exciting products.

Dashti leads a team at Amazon that collaborates with scientists across multiple organizations to steer the research behind behind building Amazon Store collections, driving recommendations, and improving personalization for customers. He joined Amazon in 2019 after several years in academia — a transition that has been marked by pleasant surprises.

"When I joined Amazon, I was thinking of myself as a small cog in this big machine, but that's not really the case," Dashti says. "You can really have an impact here, in the sense that you can drive business decisions and customer satisfaction."

Exploring new ways to shop on Amazon

Unsurprisingly, many people interact with the Amazon Store through search. You arrive with an idea of what you are looking for, type in your query, and browse the results. While effective, this is just one way to shop. Dashti's team is looking at other ways customers might discover their next favorite thing in the Amazon store.

"Is it possible to digest this list of hundreds of millions of products into smaller collections — thousands of products in tens of categories — that are connected on a narrative, such as specific events like Mother’s Day or back to school?” he elaborates. “Then we want to personalize them for our customers to discover based on their taste and shopping intent."

Related content
The story of a decade-plus long journey toward a unified forecasting model.

He breaks this challenge down into two aspects. One is collections built around events and seasonality. The Discovery Tech science team trained a machine learning model that uses seasonality forecasts, recurring marketing input, and collective customers’ past behavior to create collections such as fall or spring favorites and back to school. Another example is evergreen collections such as Internet Famous, which detects cool and viral products featured by influencers year-round. The model uses those signals to automatically create landing pages which feature those products and are discoverable by customers.

The idea for the Internet Famous feature came from a question that came up on the team: Could an algorithm identify whether an image is “cool,” based on buzz from social media influencers? The resulting feature links Amazon’s inventory with conversations on social media platforms.

Our work is more about how we can really understand what people want based on what we know about their short-term and long-term preferences and give our customers the serendipitous sense of discovery in their shopping journey.
Ali Dashti

“We trained a deep learning model on data from influencers to be a 'cool detector' for the Amazon catalog,” he says.

The second part of the personalization problem, Dashti says, is what the team calls automated merchandising: connecting the right products to individual customers.

“Now that we have these collections, how do we drive traffic to them? If a customer is looking at a product, maybe we can recommend some other products that are internet famous or spring favorites, based on what that customer is viewing,” he explains.

He added that the team is thinking about how to drive discovery for these collections in places where there is no specific intent by customers. For example, the Amazon homepage or an email might offer a “discover customers’ most-loved for you” grouping.

Automated merchandising involves the scientific challenge of making an AI-based personal product recommender of sorts for Amazon customers, answering the question of what content, where in the customer journey, and at what time. It goes beyond creating a set of rules where you might, say, display more shoes if someone has searched for shoes.

Related content
Ren Zhang and her team tackle the interesting science challenges behind surfacing the most relevant offerings.

“Our work is more about how we can really understand what people want based on what we know about their short-term and long-term preferences and give our customers the serendipitous sense of discovery in their shopping journey, even if they are not looking for a specific category of products,” he says. “Another tenet of our personalization charter is how can we make our recommendations explainable.”

Dashti refers to an explosion of innovation in AI over the past few years based on large language models that can generate text much as a human would.

“This is what we can leverage to improve how our customers experience events such as Father’s Day and back to school — understanding customer journeys as a sequence of preferences and behaviors such as shopping intents, page visits, et cetera, to leverage existing transformer-based language models that help customers sort through the huge catalog of products we have at Amazon and ensure they have a bar-raising experience,” he says.

A pivot from university to tech

Dashti’s academic focus at the University of Wisconsin Milwaukee, cryo-electron microscopy, was seemingly a far cry from what he is doing now. But there is a common thread: He was writing algorithms designed to uncover insights buried in data. When Dashti was an undergraduate at Sharif University of Technology in Iran, a professor and mentor introduced him to the research area of brain-computer interfaces.

During his fourth year, he wrote an algorithm that could identify tasks like thinking about writing a poem or rotating an object based on electroencephalogram signals. From that project, he says, “I got hooked.” He knew he wanted to pursue some form of machine learning.

Related content
How her background helps her manage a team charged with assisting internal partners to answer questions about the economic impacts of their decisions.

At the University of Wisconsin, where he earned a master’s in electrical and electronics engineering and a doctorate in biomedical and healthcare informatics, he became interested in cryo-electron microscopy, which can produce atomic-level images of frozen biological samples. He built an algorithm that could help identify conformational changes of molecular machines during their work cycle based on geometric data. His work was cited in the scientific significance section of the 2017 Nobel Prize in chemistry, which cited the development of the imaging technique and its ability to generate 3D images of biomolecules.

After several years, he had built a prestigious academic career and was living comfortably in Milwaukee with his wife and two children. But he had thoughts of moving to industry, where his work would have more tangible impacts. When a recruiter from Amazon reached out, he responded, and before long he was moving to Seattle to join the Fashion Marketing team as an applied scientist.

Soon after he joined Amazon, Carmen Nestares, who was then the group’s chief marketing officer, invited Dashti to get coffee and talked to him about the company’s Day One culture, encouraging him to make his mark.

“This was my boss’s boss’s boss. It was completely out of the blue,” he says. “She really gave me this confidence and ownership that I needed at the time.”

In his first year at the company, Dashti wrote a brief about attribution, the process of determining how different marketing campaigns link to a given purchase. He thought maybe a couple of people would read it.

To his surprise, the brief sparked change. “It went into the roadmap for the next year. A year after that, the team had incorporated my findings into how they thought about attribution. That was amazing,” he said.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

Dashti later joined Nestares in building Discovery Tech, where he now manages a team of scientists. He describes Amazon as being like a group of 10,000 startups. “You can have all the freedom of a startup, all that learning experience of putting on multiple hats,” he says. “But you have all the wealth of knowledge in the whole field at your disposal.”

The culture lends itself to a balance between immediate projects and what he has called long-term science discovery moonshots. Among other projects, the team is collaborating with Amazon Scholars Yury Polyanskiy and Sasha Rakhlin, professors of computer science at MIT, in a moonshot-level effort to map customer interactions with products onto complex graph networks to enhance personalization. Another moonshot would be to turn advances in text-to-image generation and computer vision toward searching Amazon’s catalog in new ways — by generating an image based on your own words and surfacing matching products, for example.

In addition to the collaborative nature of his work with the Discovery Tech team, Dashti has appreciated the chance to work with a diverse team and to grow in ways that go beyond technical experience. Parity for women is particularly important to him, given the recent protests in Iran, and he appreciates having mostly women leaders on his current team at Amazon.

“I have always been surrounded by powerful women,” he says, mentioning his mother and his wife, who also grew up in Iran. “Having more women in higher management in tech is a must. It brings balance, pragmatism, empathy — qualities that are really driving this organization.”

As a manager, Dashti supports scientists on his team, about a third of which are women, in pursuing their big ideas. He remembers times in his career before Amazon, he says, when he didn’t really like what he was doing, and it was just a job. He strives to make sure no one on his team reaches that point.

“It starts with ownership,” he says. “I give team members the power to choose what they want, but also the responsibility of seeing the impact of what they do. It’s a management style that requires a lot of trust.”

Related content

US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.. Come join the team that owns the technology behind AWS People Planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners. A Sr. Data Scientist in the AWS Workforce Planning team, will partner with Software Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
US, WA, Bellevue
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Senior Applied Scientist to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. An Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical expertise and a passion for developing science-driven solutions in a fast-paced environment. The ideal candidate will have a solid understanding of state of the art NLP, Generative AI, LLM fine-tuning, alignment, prompt engineering, benchmarking solutions, or CV and Multi-modal models, e.g., Vision Language Models (VLM), zero-shot, few-shot, and semi-supervised learning paradigms, with the ability to apply these technologies to diverse business challenges. You will leverage your deep technical knowledge, a strong foundation in machine learning and AI, and hands-on experience in building large-scale distributed systems to deliver reliable, scalable, and high-performance products. In addition to your technical expertise, you must have excellent communication skills and the ability to influence and collaborate effectively with key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Bellevue
Why this job is awesome? This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. - Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation