Danielle Maddix Robinson is seen standing in front of a whiteboard covered in calculations, she is looking over her left shoulder and smiling at the camera
Danielle Maddix Robinson, a senior applied scientist, draws on her background in math at Amazon where she focuses on time series forecasting as it applies to various needs for Amazon customers.
Courtesy of Danielle Maddix Robinson

How applied math impacts forecasting at Amazon

Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

Danielle Maddix Robinson had been working at Amazon Web Services (AWS) for about a year and a half when the COVID-19 pandemic presented a type of forecasting challenge quite different from the ones she had been handling in her job as an applied scientist.

The key question: Based on the number of cases so far, how many infections, recoveries, and deaths could be expected to occur in the future?

Amazon had long used computer models to forecast retail demand — when customers will want a particular product and how much of it. Maddix Robinson wanted to see whether those same algorithms could be applied to the public health crisis. The answer: not quite.

Better COVID predictions

The deep learning techniques that had worked successfully for Amazon's business benefited from a large amount of data. But early on in the pandemic, the data to make predictions was lacking.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

"Out of the box, we found that these deep learning models were not performing as well as we would have hoped," Maddix Robinson says.

At the same time, the physics-based models typically used to forecast epidemics were not working perfectly, either. These approaches employ ordinary differential equations (ODEs) to compute different stages, or "compartments," along the disease trajectory, from susceptibility to exposure to infection. Compartment models tend to do better at predicting infection and recovery, while deep learning models more accurately predict deaths.

Maddix Robinson and colleagues at Amazon and the University of California, San Diego, proposed a third way: combining ODEs and machine learning. The hybrid approach, it turned out, improved on both machine learning and compartment models, achieving a 57.4% reduction in mean absolute errors on week-ahead predictions of COVID-19 trajectories, compared to other deep learning models.

Related content
Hybrid model that combines machine learning with differential equations outperforms models that use either strategy by itself.

The resulting paper, "AutoODE: Bridging Physics-based and Data-driven modeling for COVID-19 Forecasting," won a best paper award at the NeurIPS Machine Learning in Public Health Workshop in December 2020. Maddix Robinson’s Amazon co-authors were Yuyang (Bernie) Wang, a principal machine learning scientist and Christos Faloutsos, the Fredkin Professor of Artificial Intelligence at Carnegie Mellon University (CMU) and an Amazon Scholar; the paper’s other co-authors were Rui Wang and Rose Yu from the University of California, San Diego. Maddix Robinson worked directly with Rui Wang, mentoring him on the research that informed the paper while he was a summer intern on her team.

An early gift for math

Maddix Robinson, who was promoted to senior applied scientist in April 2021, generally focuses on time series forecasting as it applies to various needs for Amazon customers.

"One thing I really enjoy about this role is the emphasis on the core mathematical modeling, which was in my background," says Maddix Robinson, who joined Amazon after earning her PhD in computational and mathematical engineering from Stanford University, where she also earned her master's degree in the same field.

Related content
Early on, Giovanni Paolini knew little about machine learning — now he’s leading new science on artificial intelligence that could inform AWS products.

As an undergrad at the University of California, Berkeley, she was interested in both biochemistry and math, taking classes in both areas. "But once I took all the calculus courses and linear algebra, I really just fell in love with it," she says. "I just saw the beauty of math as a universal language." She graduated with a bachelor's in applied mathematics.

Growing up in Alameda, California, Maddix Robinson gravitated to math from an early age — she liked the feeling of solving puzzles. She had help and encouragement from her mother, Denise Cervelli Maddix, a mathematician who worked at Lawrence Livermore National Laboratory.

"Seeing a female role model when I was younger really made me want to pursue a career in math," she says.

Seeing a female role model when I was younger really made me want to pursue a career in math.
Danielle Maddix Robinson

Her mother's math models were used in earth science research at Lawrence Livermore. "So as a kid, I was always interested in seeing how math could be used to address practical problems," Maddix Robinson says. That's something I really like about this role at Amazon. I feel like it fits that niche of what I was looking for."

Maddix Robinson said encouragement from her father, Daniel Maddix, a pharmacist and infectious disease expert who worked at the San Francisco VA Medical Center, motivated her to apply mathematics to epidemiology and public health. “I was excited to get that first opportunity with the COVID forecasting project at AWS AI Labs,” she says.

Related content
Jovonia Thibert, director of strategy for Amazon Robotics, has a career that spans two decades — thanks in part to a lesson from her parents.

As a graduate student, Maddix Robinson sought positions in academia, industry, and national research labs to determine which was the best fit. She taught courses in advanced MATLAB and numerical linear algebra refresher courses, among other research and educational activities at Stanford. She worked as a computational researcher at Lawrence Berkeley National Lab and as an extreme-scale data analytics intern at Sandia National Laboratories. And she was a software engineer intern at NVIDIA, where she worked on linear algebra algorithms for the company's cuSPARSE library related to GPU processing.

"That was a very good programming experience for me, mixed with math," Maddix Robinson says of her time at NVIDIA. "That gave me a sense that I really did enjoy industry."

Seeking simplicity and efficiency

In the last year of her doctorate work, Maddix Robinson was evaluating different companies to work. She was intrigued by the work presented by various AWS AI scientists at the 2017 Machine Learning Conference (MLConf). Maddix Robinson was attracted to AWS AI’s mission and its approach: It was research-oriented, with the opportunity to publish papers, but fast-paced and focused on delivering products.

“Danielle is a quintessential all-round scientist whose work exemplifies customer-obsessed science,” said Bernie Wang, the principal machine learning scientist who leads Maddix Robinson’s team. “Not only does she have deep technical expertise in machine learning and applied math, what sets her apart is her strong sense of ownership, attention to details, excellent communication and organizational skills, her ability to build consensus and move complex projects forward, and her influence on the team through collaboration and mentorship.”

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

Solving some of the potentially daunting challenges in her team's work requires a willingness to take them on one step at a time. "An ambiguous problem is what research is, at its core," Maddix Robinson says. "So I would say don’t be put off by something that seems ambiguous at first. Break it up into core sub-problems."

She also appreciates that she also gets to mentor and teach graduate students through Amazon's summer internship program. "Our team is very collaborative and also interdisciplinary," she says. "Everyone's looking to help each other learn and grow. It's a very supportive environment that I found similar to academia, which I enjoy."

Teaching others has an important secondary benefit, Maddix Robinson notes. Thinking about how to clearly explain a concept helps her understand it more deeply.

"At the end of the day,” she says, “that's what we're looking for: not the most complex solution, but a simple and efficient solution."

Research areas

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
IL, Tel Aviv
Are you an inventive, curious, and driven Applied Scientist with a strong background in AI and Deep Learning? Join Amazon’s AWS Multimodal generative AI science team and be a catalyst for groundbreaking advancements in Computer Vision, Generative AI, and foundational models. As part of the AWS Multimodal generative AI science team, you’ll lead innovative research projects, develop state-of-the-art algorithms, and pioneer solutions that will directly impact millions of Amazon customers. Leveraging Amazon’s vast computing power, you’ll work alongside a supportive and diverse group of top-tier scientists and engineers, contributing to products that redefine the industry. Key job responsibilities * Lead research initiatives in Multimodal generative AI, pushing the boundaries of model efficiency, accuracy, and scalability. * Design, implement, and evaluate deep learning models in a production environment. * Collaborate with cross-functional teams to transfer research outcomes into scalable AWS services. * Publish in top-tier conferences and journals, keeping Amazon at the forefront of innovation. * Mentor and guide other scientists and engineers, fostering a culture of scientific curiosity and excellence.
GB, Cambridge
The Artificial General Intelligence team (AGI) has an exciting position for an Applied Scientist with a strong background NLP and Large Language Models to help us develop state-of-the-art conversational systems. As part of this team, you will collaborate with talented scientists and software engineers to enable conversational assistants capabilities to support the use of external tools and sources of information, and develop novel reasoning capabilities to revolutionise the user experience for millions of Alexa customers. Key job responsibilities As an Applied Scientist, you will develop innovative solutions to complex problems to extend the functionalities of conversational assistants . You will use your technical expertise to research and implement novel algorithms and modelling solutions in collaboration with other scientists and engineers. You will analyse customer behaviours and define metrics to enable the identification of actionable insights and measure improvements in customer experience. You will communicate results and insights to both technical and non-technical audiences through written reports, presentations and external publications.
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Artificial General Intelligence (AGI) organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
We are seeking a highly skilled economist to measure and understand how each Customer Service activity impacts customers. This candidate's analysis will assist teams across Amazon to prioritize defect elimination efforts and optimize how we respond to customer contacts. This candidate will partner closely with our product, program, and tech teams to deliver their findings to users via systems and dashboards that guide Customer Service planning and policy rules. Key job responsibilities - Develop Causal, Economic, and Machine Learning models at scale. - Engage in economic analysis and raise the bar for research. - Inform strategic discussions with senior leaders across the company to guide policies. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan About the team The Worldwide defect elimination team's mission is to understand and resolve all issues impacting customers at scale. The Customer Service Economics and Optimization team is a force multiplier within this group, helping to understand the impact of these issues and our actions to optimize the customer experience.
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Seattle
At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in machine learning, artificial intelligence and related fields. Amazon scientists employ the company's working backwards method to identify problems to solve on behalf of customers in research areas ranging from machine learning to operations, GenAI, robotics, quantum computing, computer vision, economics, search, sustainability and more. Learn more about Amazon Science here: https://www.amazon.science/ We are hiring across multiple businesses and in many locations across the US. Apply here to learn more about open roles that could be a compelling fit for your background. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
NL, Amsterdam
Are you a MS or PhD student interested in a 2025 Internship in the field of machine learning, deep learning, speech, robotics, computer vision, optimization, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. The AB Sales Analytics, Data, Product and Tech (ADAPTech) team uses CRM, data, product, and science to improve Sales productivity and performance. It has four pillars: 1) SalesTech maintains Salesforce to enable Sales workflows, and supports >2K users in nine countries; 2) Product and Science builds tools embedded with bespoke Machine Learning (ML) and GenAI large language models to enable sales reps to prioritize top accounts, position the right Amazon Business (AB) product features, and take actions based on critical customer events; 3) Sales Data Management (SDM) and Sales Account Management (SAM) enrich customer profiles and business hierarchies while improving productivity through automation and integration of internal/external tools; and 4) Business Intelligence (BI) enables self-service reporting simplifying access to key insights through WBRs and dashboards. Sales teams leverage these products to identify which customers to target, what features to target them with, and when to target them, in order to capture their share of wallet. A successful Applied Scientist at Amazon demonstrates bias for action and operates in a startup environment, with outstanding leadership skills, and proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. We need great leaders to think big and design new solutions to solve complex problems using machine learning (ML) and Generative AI techniques to improve our customers’ experience when using AB. You have hands-on experience making the right decisions about technology, models and methodology choices. Key job responsibilities As an Applied Scientist, you will primarily leverage machine learning techniques and generative AI to outreach customers based on their life cycle stage, behavioral patterns, and purchase history. You may also perform text mining and insight analysis of real-time customer conversations and make the model learn and recommend the solutions. Your work will directly impact the trust customers place in Amazon Business. You will partner with product management and technical leadership to identify opportunities to innovate customer journey experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but also play a crucial role in shaping strategies. Additional responsibilities include: -Design, implement, test, deploy and maintain innovative data and machine learning solutions to further the customer experience. -Create experiments and prototype implementations of new learning algorithms and prediction techniques -Develop algorithms for new capabilities and trace decisions in the data and assess how proposed changes could potentially impact business metrics to cater needs of Amazon Business Sales -Build models that measure incremental value, predict growth, define and conduct experiments to optimize engagement of AB customers, and communicate insights and recommendations to product, sales, and finance partners. A day in the life In this role, you will be a technical expert with significant scope and impact. You will work with Technical Product Managers, Data Engineers, other Scientists, and Salesforce developers, to build new and enhance existing ML models to optimize customer experience. You will prototype and test new ideas, iterate quickly, and deploy models to production. Also, you will conduct in-depth data analysis and feature engineering to build robust ML models.
US, WA, Seattle
Amazon continues to invest heavily in building our world class advertising business. Our products are strategically important to our Retail and Marketplace businesses, driving long term growth. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and strong bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Sponsored Products Monetization team is broadly responsible for pricing of ads on Amazon search pages, balancing short-term and long-term ad revenue growth to drive sustainable marketplace health. As a Senior Applied Scientist on our team, you will be responsible for defining the science and technical strategy for one of our most impactful marketplace controls, creating lasting value for Amazon and our advertising customers. You will help to identify unique opportunities to create customized and delightful shopping experience for our growing marketplaces worldwide. Your job will be identify big opportunities for the team that can help to grow Sponsored Products business working with retail partner teams, Product managers, Software engineers and PMs. You will have opportunity to design, run and analyze A/B experiments to improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills in an environment that thrives on creativity, experimentation, and product innovation. Key job responsibilities - Lead science, tech and business strategy and roadmap for Sponsored Products Monetization - Drive alignment across multiple organizations for science, engineering and product strategy to achieve business goals - Lead and mentor scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon and advertisers - Develop state of the art experimental approaches and ML models - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving - Research new and innovative machine learning approaches - Recruit Scientists to the team and provide mentorship