De'Aira Bryant, who has done two internships at Amazon, and is a fourth-year computer science PhD student at the Georgia Institute of Technology, is seen posing in front of a wall with some transportation logos and Amazon Web Services written on it
De'Aira Bryant, who has done two internships at Amazon, is a fourth-year computer science PhD student at the Georgia Institute of Technology, where her research focuses on the application of robotics in health care and rehabilitation.
Courtesy of De'Aira Bryant

How De’Aira Bryant found her path into robotics

The computer scientist recently finished her second internship at Amazon, where she worked on a new way to estimate the human expression on faces in images.

Growing up in Estill, South Carolina, De’Aira Bryant didn’t know she was interested in computer science until she was persuaded to explore the field by her mother, who noted that computer scientists have good career prospects and get to do interesting work.

“I was handy with making flyers and doing the programs for church, that type of thing,” Bryant says. “She somehow convinced me that was computer science and I had no way to know better.”

In her first class as a computer science major at the University of South Carolina (UofSC), she realized that she didn’t really know what computer science entailed. “I was completely out of my league, coming from a small town with no computer science or robotics background at all.”

De'Aira Bryant is seen standing on a stage with a screen elevated above her in the background showing robots at her TEDx Talk
At her TEDx talk, De'Aira Bryant discussed how lessons from society's technological past can shed light on embracing a future with social robots.
Courtesy of De'Aira Bryant

Bryant immediately wanted to change her major, but Karina Liles — the graduate teaching assistant and the only female TA in the program at that time — convinced her to stay. “We were doing that ‘Hello, World!’ program and I was like: Do you want me to type it on Word? What do you mean, I'm writing a program?” Bryant remembers Liles looked at her in astonishment and set out to help her.

After the initial shock, Bryant started to thrive.

“It actually worked out for me, because I've always been really good at math, I also got a minor in math. And later I realized that what I actually like is logic, which was perfect for a computer science student at UofSC, because a lot of courses focused on the principles of logic.”

It turned out her mother was right after all.

Today, she’s a fourth-year computer science PhD student at the Georgia Institute of Technology, where her research focuses on the application of robotics in health care and rehabilitation. Over the years, Bryant has received research awards, given a TEDx Talk, and even programmed a robot that starred in a movie. Having recently completed her second internship at Amazon Web Services (AWS), she still finds time to think about fun and exciting ways to make computer science more accessible to diverse populations.

Making robots dance (and act)

Right after her first class, Bryant was invited by Liles, the TA, to do an internship at Assistive Robotics and Technology Lab (ART lab), headed by Jenay Beer, who was Liles’ advisor at the time and also played a crucial role in Bryant’s education at UofSC. (Currently, Liles is a professor at Claflin University and Beer is a professor at the University of Georgia.) Bryant didn’t think twice before accepting.

“I have my own desk, and I’m getting paid? Sign me up! What better job could there be?” she remembers thinking. She worked on designing systems for children in schools that did not have computer science curriculums, using robots as a method of engagement and exposure.

Initially, she would prepare the robots for studies, take them in the field, and watch kids interact with them. Later, she got to take crash courses to learn how to program them. “I don't think I was interested in robotics until I got to see to see how they were used, their application in the real world,” she says. The fact that she loved seeing them in action made her want to learn how to make them work.

As an undergrad, she started to program these robots to do short dance moves. She posted those clips to her social media, which piqued the curiosity of kids who followed her.

An unexpected journey: De'Aira Bryant

“I thought, ‘I'm going to trick them into asking more questions and I'm going to recruit more computer scientists by posting robots dancing,’” she says. “That kind of turned into a thing. Now I have a whole social media presence on making robots dance and do cool stuff.”

Bryant is deeply interested in changing the way computer science is taught.

From a culturally relevant perspective, a lot of the ways that we teach these concepts can miss the mark with a lot of students, especially students who come from minority backgrounds.
De'Aira Bryant

“From a culturally relevant perspective, a lot of the ways that we teach these concepts can miss the mark with a lot of students, especially students who come from minority backgrounds.” She says that throughout her computer science curriculum, a lot of the examples and problems proposed by the professors were not relevant to her. “I would completely rewrite the problem and that was how I was able to make it through my undergrad and graduate education.”

Currently, her main research at the Georgia Institute of Technology is focused on the applications of robotics on rehabilitation for children who have motor and cognitive disabilities.

“That kind of attracted me and now we have more robots and more resources and we’re linked with rehabilitative therapy centers in Atlanta and getting to work in those places as well,” she said.

Bryant still uses the expertise she acquired with the dancing robots. When HBO Max was filming the movie Superintelligence on Georgia Tech’s campus in 2019 and wanted to add cool futuristic robot scenes, Bryant’s adviser, Ayanna Howard, who today is dean and professor in the College of Engineering at Ohio State University, said she would be the right person for the job.

She had two weeks to prepare.

By the time she got to the set, the script had changed and she ended up having to redo the work on the set. “I was programming in real-time. And I think the movie people were so excited about that. They were standing over my shoulders saying, 'You’re actually coding.'” Bryant got to meet Melissa McCarthy, the star of the movie, and teach her kids how to make the robot move. “They all wanted pictures with the robot. I felt like my robot was the biggest star on the set.”

Interning at Amazon

Bryant then met Nashlie Sephus, a machine learning technology evangelist for AWS, at the National GEM Consortium Fellowship conference in 2019 (Bryant is a current GEM fellow and Sephus is an alum). After Bryant presented her research during a competition, Sephus approached her. “She said, ‘The work you're doing is very similar to what my team is doing at Amazon, and I think it would be really awesome if you came to work with us’,” Bryant recalls.

Sephus focuses on fairness and identifying biases in artificial intelligence, areas that Bryant was beginning to explore. She applied to the 2020 summer internship, went through the interview process, and got to work directly with Sephus.

During Bryant’s first AWS internship, she worked on bias auditing of services that estimate the expression of faces in images, an active area of research within academia and industry. In Bryant’s robotics healthcare research at Georgia Tech, the robots utilize emotion estimation to help identify what the patient they're working with is feeling in order to inform what they should do or say next.

This summer, during her second AWS internship, Bryant researched how to potentially improve the way the emotion being expressed on a person’s face is estimated. Other research within Amazon on emotion estimation entails making a determination of the physical appearance of a person's face. It is not a determination of the person’s internal emotional state. Currently, the way researchers generally train machine learning models for that type of estimation is by annotating numerous face images. Each image is labeled with a single emotion — happiness, sadness, surprise, disgust, or anger.

“We see that a lot of people disagree in their interpretations of the expressions on some faces. And what normally happens if a face has too many people disagreeing on the emotion it is expressing is that we throw it out of the dataset. We say it's not a good way to teach our models about emotion,” Bryant says. She thinks that maybe that’s exactly what the system should be learning. “We should be teaching it ambiguity just as much as we are teaching it about things of which we are absolutely sure.”

To that end, the team she was on explored letting people rate a series of emotions on a scale for each image, instead of labeling it with a single emotion. “Instead of throwing out the images, we can model that into a distribution that tells us: most people see this image as happy, but there is a significant amount of people who also see it as surprise.”

Even after the end of her internship, Bryant continues to work with her team to write a paper to describe some of the work they did over the last two summers.

“It's been a big project, but we have enough now that we're ready to put out a paper. So, I'm excited about that.”

Bryant recently got a return offer to come back to Amazon next summer, possibly to work on a partnership between Sephus’s team and the robotics team. “I haven't done anything with robotics at Amazon yet so I would actually love to see what they're doing over there, so the offer is very appealing.”

What robots should look like

Another area of research for Bryant is understanding how people conceptualize a robot based on its perceived abilities. There is an ongoing debate in robotics circles about whether developing humanoid robots is a good thing. Among other aspects, the controversy has to do with the fact that they are expensive to build and deploy.

“A lot of people are questioning: 'Do we even really need to be designing humanoids?’,” she says.

Bryant, along with colleagues at Georgia Tech who are interested in robots that are capable of perceiving emotions, designed an experiment to investigate how people imagine a robot’s appearance based on what it can do. The study’s participants worked on an emotion annotation activity with the assistance of an expert artificial intelligence system that followed a set of rules. The participants were told that “a robot is available to assist you in completing each task using its newly developed computer vision algorithm.”

De'Aira Bryant is seen from behind, she is typing on an open laptop and there is a humanoid robot with a display tablet on its chest looking at her to the right of the laptop
De'Aira Bryant and her colleagues at Georgia Tech designed an experiment to investigate how people imagine a robot’s appearance based on what it can do.
Courtesy of De'Aira Bryant

But the researchers did not tell them what the robot looked like. The robot’s predictions were provided via text. At the end of the study, participants were asked to describe how they envisioned it in their heads. Half of the people envisioned the robot with human-like qualities, with a head, arms, legs and the ability to walk, for example.

For that work – described in the article “The Effect of Conceptual Embodiment on Human-Robot Trust During a Youth Emotion Classification Task” — Bryant and her colleagues won the best paper award in the IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO2021).

The goal of the research: investigate factors that influence human-robot trust when the embodiment of the robot is left for the user to conceptualize.

“In that paper, we presented the method of trying to gauge how humans expect a robot to look based on what it can do. That was one of the contributions,” says Bryant. The other contribution: demonstrate that it can be beneficial for a robot to look a certain way depending on its function. The study found that the participants who imagined the robot with human-like characteristics reported higher levels of trust than those who did not.

“For the robots that are emotionally perceptive, if we fail to meet the expectations of most people, then we could already be losing some of the effect that we intend to have,” says Bryant. “People expect that a robot that can perceive emotions will be human-like and if we don't design robots in that way, people could be less willing to depend on that robot.”

Future career plans

Bryant says that her long-term career plans are constantly changing. She was set on being a professor, but her experience at Amazon has redefined what industry research is for her. “On the last team I was on, I was actually working with a lot of professors. And I think it’s so cool to have the ability to bridge that gap.”

When she was about to start her first AWS internship, she expected she would be given a project, a few tasks, a deadline to complete them, and wouldn’t have a lot of say in that. “But when I first got there I actually did have a lot of say. They were interested in what I was doing at Georgia Tech, they wanted to know more about my research and made a strong effort to make the internship experience mine,” she says.

One of her ideas of a perfect job is being an Amazon Scholar. “I would get to work with students in a university and still work with Amazon. That is the perfect goal.”

Research areas

Related content

US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.