Garrett van Ryzin
Garrett van Ryzin joined Amazon's Supply Chain Optimization Technologies organization in August as a distinguished scientist.
Credit: Jesse Winter/Cornell University

How distinguished scientist Garrett van Ryzin is optimizing his time at Amazon

van Ryzin is focusing on driving innovations in areas ranging from inventory management to last-mile delivery.

Amazon announced in August 2020 that Garrett van Ryzin would be joining the company’s Supply Chain Optimization Technologies (SCOT) organization as a distinguished scientist. SCOT is responsible for designing, building, and operating the Amazon supply chain. SCOT systems manage inventory for the millions of items on Amazon, compute accurate delivery expectations for customer orders, and drive meaningful changes to Amazon’s fulfillment center network so that customers receive their packages in the most efficient way possible.

Prior to Amazon, van Ryzin was a professor of Operations, Technology and Information Management at Cornell Tech, and previously the Paul M. Montrone Professor of Decision, Risk, and Operations at the Columbia University Graduate School of Business.  His university research work has focused on algorithmic pricing, demand modeling, and stochastic optimization.

van Ryzin was also the head of marketplace optimization at ridesharing companies Lyft and Uber, where he led teams that developed models for a variety of functions, such as optimally dispatching drivers to riders, and developing pricing models and driver pay systems that improve market efficiency. Interestingly, van Ryzin’s paper that he wrote while pursuing his PhD at MIT “A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane” imagined a world of on-demand transportation as far back as 1991.

During his career, van Ryzin’s work on complex revenue management problems has enabled businesses across diverse industry sectors to get the most out of their limited capacity. To give just a few examples, van Ryzin’s research has enabled airlines to make a series of large-scale, dynamic and sequential decisions to determine the optimal price of a ticket at a particular moment in time. Retail companies have used similar dynamic optimization to manage inventory levels and prices for different products to maximize revenue.

What I find particularly interesting are problems that move beyond the constraints of optimizing within the system, to actually redesigning the system itself. 
Garrett van Ryzin

However, at Uber and Lyft van Ryzin tackled a new business environment, where revenue maximization wasn’t the primary goal. Instead, van Ryzin’s teams focused on optimizing more immediate metrics that were vital to the very survival of their services: service reliability, driver productivity, and growth.

For example, having a sufficient number of idle drivers at any given time is critical to maintaining throughput in ridesharing services. Surge pricing, a mechanism that van Ryzin’s team at Uber optimized, maintains an efficient level of idle drivers and encourages more drivers to get on the street during peak hours when they are needed the most.

van Ryzin sees technology-enabled service providers — be it at a ridesharing company like Lyft or the Fulfilled by Amazon (FBA) service — as transformational.  Only a few decades ago, businesses like these weren’t viable ways to organize service delivery due to high transaction costs and lack of real-time information. However, technology has radically improved information exchange and reduced transaction costs, which allows independent sellers to sell their products on Amazon much more efficiently than they could on their own.

In this interview, van Ryzin spoke about the different facets of market optimization, the intricacies of making automated decisions at scale, managing system complexity using approximation and decomposition ideas, and why he joined Amazon.

Q. What are the different elements of optimization?

I’d like to think of optimization being made up of human, technical and operational elements.

At a human level, the understanding of behavioral economics is absolutely critical. You have to create the right incentives for both suppliers and buyers to drive efficiencies. This is especially important for companies like Amazon that have many buyers and sellers participating and a high degree of decentralized activity. 

In addition to the human considerations, you also must develop a deep understanding of the technical elements of how these marketplaces work – the capabilities and limitation of the technology – which in turn allows you to gain insights into what structural changes are possible.

Finally, building services like Amazon that provide physical goods and services is a much more complicated endeavor than developing a service for trading virtual entities like stocks or mutual funds. To give just one example, at Amazon we are shipping actual, physical goods. This means the underlying physics of the infrastructure and the different operational elements are critical. So you must also think about your service in terms of factors like product weight and size, labor requirements, storage capacity, inventory levels, and lead times.

From a scientific perspective, there are several open questions in all three elements of market optimization. A fundamental one is determining the best approach to take to develop models to drive efficiency.

One approach is to develop structural models from first principles. For example, you could make an assumption that consumers are utility maximizers, develop a utility function and identify the parameters that constitute this utility function.

Garrett van Ryzin
Garrett van Ryzin, Amazon distinguished scientist

You could also take a radically different approach and build models based only on the underlying data – where you draw inferences from what the data alone tells you. Here, you’re not worrying about why something happened. Rather, you can use ideas from machine learning to estimate and refine predictive models without trying to understand the underlying mechanics.

What I find particularly interesting are problems that move beyond the constraints of optimizing within the system, to actually redesigning the system itself.  The ‘Wait and Save’ feature my group developed at Lyft is a good example. This product allows riders to opt into waiting for ten to fifteen minutes for a ride rather than having all rides be on-demand. In exchange for waiting, riders get a lower price. On the technology side, what we are doing here is actually changing the product in order to make the marketplace more efficient. I’ve always found there’s a lot more leverage in changing a system rather than optimizing within a fixed system.  It’s a lot trickier though because big structural changes often mean you have to get users comfortable with entirely new products or a completely new way of using the system.

Q. How do you account for the uncertainty and complexity inherent in large systems?

Approximation is at the heart of optimization because you can never fully represent the full complexity of a real-world trading system. For example, if a consumer places an order on Amazon, you have to make several sequential decisions with complex interactions.  Which fulfillment center should I take that order from? Should I place the items in the same box or should I pack them in different boxes? How will fulfilling this order impact the availability of inventory for the next order that comes in for that product? And how will it affect the available capacity of my local delivery assets?

You can develop approximation models by using a rolling horizon approach. This involves taking a best guess for what the future entails, and then updating your estimate for the future as and when you get new information. Or you could do something that’s far more sophisticated: build simulations of the future, and use sampling techniques to guide your decisions. You can also utilize reinforcement learning where you fit value functions to historical actions to arrive at decisions that are continually refined based on data.

Decomposition is also an important strategy for dealing with the interconnectedness of the different elements of the system. In large systems such as Amazon, everything is related to everything else. Supply affects costs, which affects pricing, which in turn affects demand, which affects dispatch, and so on. Ideally, you’d want to arrive at decisions by taking the whole system into account. However, the size of any real-world system makes this impossible. Any model you arrive at will be too complex, and you’d require a large amount of time to compute anything reasonable.

I’ve always been attracted to the idea of helping drive innovations to get people the basic, physical necessities that are essential to how they live.
Garrett van Ryzin

This is where decomposition comes in. You can break the system down into individual components – such as dispatch models, pricing models, inventory models and so on. The challenge here is to get these different models to collaborate. You don’t want scenarios where they are working at cross purposes with each other. For example, you don’t want one model trying to get rid of an item and have another model actively trying to replace it. In cases like these, you can drive coordination between different models using an internal price or some other mechanism that’s common to all the models.

These are just some of the trickiest issues in optimization, and I’m excited to be at Amazon where a lot of the innovation in these areas is taking place.

Q. Why did you decide to join Amazon?

I’ve always admired Amazon as a company because of its incredible track record of innovation across so many areas. I remember shopping at Amazon when they just sold books. And today, you have Amazon Studios, AWS, Amazon Devices, Alexa and even Project Kuiper where Amazon is putting up over 3,000 satellites in space.

Amazon is a company that excels at understanding economic opportunity and then building products and services that customers value. I’ve only been here for a few months, but I can already see how the company’s unique culture helps it be so successful across so many areas.

I also admire the company’s long-term perspective. Amazon doesn’t make decisions based on driving quarter-over-quarter performance. Amazon is willing to stick with ideas for many years. This appeals to me as a scientist as in my experience, sticking with the right idea over the long term is essential to making fundamental breakthroughs.

At SCOT, I’m excited to have the opportunity to contribute across so many areas, from FBA to last-mile delivery. Over the last few months, Amazon has helped so many people across the world get essential items during the pandemic. I’ve always been attracted to the idea of helping drive innovations to get people the basic, physical necessities that are essential to how they live.

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
SE, Stockholm
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. The Prime Video Sye Protocol team is looking for an Applied Scientist. This person will deliver features that automatically detect and prevent video quality issues before they reach millions of customers worldwide. You will lead the design of models that scale to very large quantities of video data across multiple dimensions. You will embody scientific rigor, designing and executing experiments to demonstrate the technical effectiveness and business value of your methods. You will work alongside engineering teams to deliver your research into production systems that ensure premium streaming experiences for customers globally. You will have demonstrated technical, teamwork and communication skills, and a motivation to deliver customer value from your research. Our team offers exceptional opportunities for you to grow your technical and non-technical skills and make a global impact. Key job responsibilities - Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement to solve complex video defect detection challenges. - Collaborate with software engineers to integrate successful experimental results into Prime Video wide processes and production systems that operate at scale with minimal computational overhead. - Communicate results and insights to both technical and non-technical audiences, including presentations and written reports to stakeholders across engineering, operations, and content teams. A day in the life Your typical day starts investigating overnight video quality alerts and developing breakthrough detection algorithms. You'll collaborate with engineering teams on production deployment, analyze video data to uncover quality patterns, and work with transformers and video language models. About the team You'll join a team focused on delivering premium video experiences through scientific innovation. We build machine learning systems that automatically detect video quality issues across our global streaming platform, collaborating closely with engineering, operations, and content teams to solve video analysis challenges while ensuring customers never experience poor quality. Our team partners with leading universities to develop solutions and advance computer vision and machine learning techniques. We value scientific rigor whilst staying customer-focused, encouraging both innovative and practical solutions that scale globally. There are opportunities for high-impact publications and patent development that advance the entire field.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.