Garrett van Ryzin
Garrett van Ryzin joined Amazon's Supply Chain Optimization Technologies organization in August as a distinguished scientist.
Credit: Jesse Winter/Cornell University

How distinguished scientist Garrett van Ryzin is optimizing his time at Amazon

van Ryzin is focusing on driving innovations in areas ranging from inventory management to last-mile delivery.

Amazon announced in August 2020 that Garrett van Ryzin would be joining the company’s Supply Chain Optimization Technologies (SCOT) organization as a distinguished scientist. SCOT is responsible for designing, building, and operating the Amazon supply chain. SCOT systems manage inventory for the millions of items on Amazon, compute accurate delivery expectations for customer orders, and drive meaningful changes to Amazon’s fulfillment center network so that customers receive their packages in the most efficient way possible.

Prior to Amazon, van Ryzin was a professor of Operations, Technology and Information Management at Cornell Tech, and previously the Paul M. Montrone Professor of Decision, Risk, and Operations at the Columbia University Graduate School of Business.  His university research work has focused on algorithmic pricing, demand modeling, and stochastic optimization.

van Ryzin was also the head of marketplace optimization at ridesharing companies Lyft and Uber, where he led teams that developed models for a variety of functions, such as optimally dispatching drivers to riders, and developing pricing models and driver pay systems that improve market efficiency. Interestingly, van Ryzin’s paper that he wrote while pursuing his PhD at MIT “A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane” imagined a world of on-demand transportation as far back as 1991.

During his career, van Ryzin’s work on complex revenue management problems has enabled businesses across diverse industry sectors to get the most out of their limited capacity. To give just a few examples, van Ryzin’s research has enabled airlines to make a series of large-scale, dynamic and sequential decisions to determine the optimal price of a ticket at a particular moment in time. Retail companies have used similar dynamic optimization to manage inventory levels and prices for different products to maximize revenue.

What I find particularly interesting are problems that move beyond the constraints of optimizing within the system, to actually redesigning the system itself. 
Garrett van Ryzin

However, at Uber and Lyft van Ryzin tackled a new business environment, where revenue maximization wasn’t the primary goal. Instead, van Ryzin’s teams focused on optimizing more immediate metrics that were vital to the very survival of their services: service reliability, driver productivity, and growth.

For example, having a sufficient number of idle drivers at any given time is critical to maintaining throughput in ridesharing services. Surge pricing, a mechanism that van Ryzin’s team at Uber optimized, maintains an efficient level of idle drivers and encourages more drivers to get on the street during peak hours when they are needed the most.

van Ryzin sees technology-enabled service providers — be it at a ridesharing company like Lyft or the Fulfilled by Amazon (FBA) service — as transformational.  Only a few decades ago, businesses like these weren’t viable ways to organize service delivery due to high transaction costs and lack of real-time information. However, technology has radically improved information exchange and reduced transaction costs, which allows independent sellers to sell their products on Amazon much more efficiently than they could on their own.

In this interview, van Ryzin spoke about the different facets of market optimization, the intricacies of making automated decisions at scale, managing system complexity using approximation and decomposition ideas, and why he joined Amazon.

Q. What are the different elements of optimization?

I’d like to think of optimization being made up of human, technical and operational elements.

At a human level, the understanding of behavioral economics is absolutely critical. You have to create the right incentives for both suppliers and buyers to drive efficiencies. This is especially important for companies like Amazon that have many buyers and sellers participating and a high degree of decentralized activity. 

In addition to the human considerations, you also must develop a deep understanding of the technical elements of how these marketplaces work – the capabilities and limitation of the technology – which in turn allows you to gain insights into what structural changes are possible.

Finally, building services like Amazon that provide physical goods and services is a much more complicated endeavor than developing a service for trading virtual entities like stocks or mutual funds. To give just one example, at Amazon we are shipping actual, physical goods. This means the underlying physics of the infrastructure and the different operational elements are critical. So you must also think about your service in terms of factors like product weight and size, labor requirements, storage capacity, inventory levels, and lead times.

From a scientific perspective, there are several open questions in all three elements of market optimization. A fundamental one is determining the best approach to take to develop models to drive efficiency.

One approach is to develop structural models from first principles. For example, you could make an assumption that consumers are utility maximizers, develop a utility function and identify the parameters that constitute this utility function.

Garrett van Ryzin
Garrett van Ryzin, Amazon distinguished scientist

You could also take a radically different approach and build models based only on the underlying data – where you draw inferences from what the data alone tells you. Here, you’re not worrying about why something happened. Rather, you can use ideas from machine learning to estimate and refine predictive models without trying to understand the underlying mechanics.

What I find particularly interesting are problems that move beyond the constraints of optimizing within the system, to actually redesigning the system itself.  The ‘Wait and Save’ feature my group developed at Lyft is a good example. This product allows riders to opt into waiting for ten to fifteen minutes for a ride rather than having all rides be on-demand. In exchange for waiting, riders get a lower price. On the technology side, what we are doing here is actually changing the product in order to make the marketplace more efficient. I’ve always found there’s a lot more leverage in changing a system rather than optimizing within a fixed system.  It’s a lot trickier though because big structural changes often mean you have to get users comfortable with entirely new products or a completely new way of using the system.

Q. How do you account for the uncertainty and complexity inherent in large systems?

Approximation is at the heart of optimization because you can never fully represent the full complexity of a real-world trading system. For example, if a consumer places an order on Amazon, you have to make several sequential decisions with complex interactions.  Which fulfillment center should I take that order from? Should I place the items in the same box or should I pack them in different boxes? How will fulfilling this order impact the availability of inventory for the next order that comes in for that product? And how will it affect the available capacity of my local delivery assets?

You can develop approximation models by using a rolling horizon approach. This involves taking a best guess for what the future entails, and then updating your estimate for the future as and when you get new information. Or you could do something that’s far more sophisticated: build simulations of the future, and use sampling techniques to guide your decisions. You can also utilize reinforcement learning where you fit value functions to historical actions to arrive at decisions that are continually refined based on data.

Decomposition is also an important strategy for dealing with the interconnectedness of the different elements of the system. In large systems such as Amazon, everything is related to everything else. Supply affects costs, which affects pricing, which in turn affects demand, which affects dispatch, and so on. Ideally, you’d want to arrive at decisions by taking the whole system into account. However, the size of any real-world system makes this impossible. Any model you arrive at will be too complex, and you’d require a large amount of time to compute anything reasonable.

I’ve always been attracted to the idea of helping drive innovations to get people the basic, physical necessities that are essential to how they live.
Garrett van Ryzin

This is where decomposition comes in. You can break the system down into individual components – such as dispatch models, pricing models, inventory models and so on. The challenge here is to get these different models to collaborate. You don’t want scenarios where they are working at cross purposes with each other. For example, you don’t want one model trying to get rid of an item and have another model actively trying to replace it. In cases like these, you can drive coordination between different models using an internal price or some other mechanism that’s common to all the models.

These are just some of the trickiest issues in optimization, and I’m excited to be at Amazon where a lot of the innovation in these areas is taking place.

Q. Why did you decide to join Amazon?

I’ve always admired Amazon as a company because of its incredible track record of innovation across so many areas. I remember shopping at Amazon when they just sold books. And today, you have Amazon Studios, AWS, Amazon Devices, Alexa and even Project Kuiper where Amazon is putting up over 3,000 satellites in space.

Amazon is a company that excels at understanding economic opportunity and then building products and services that customers value. I’ve only been here for a few months, but I can already see how the company’s unique culture helps it be so successful across so many areas.

I also admire the company’s long-term perspective. Amazon doesn’t make decisions based on driving quarter-over-quarter performance. Amazon is willing to stick with ideas for many years. This appeals to me as a scientist as in my experience, sticking with the right idea over the long term is essential to making fundamental breakthroughs.

At SCOT, I’m excited to have the opportunity to contribute across so many areas, from FBA to last-mile delivery. Over the last few months, Amazon has helped so many people across the world get essential items during the pandemic. I’ve always been attracted to the idea of helping drive innovations to get people the basic, physical necessities that are essential to how they live.

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team