senior research scientist Jonathan Toner profile picture
Since joining Amazon Flex, senior research scientist Jonathan Toner has created an entire ecosystem of machine learning models and optimization tools to incentivize Amazon Flex participation.

Jonathan Toner’s hunt for hard questions took him from Antarctica to Amazon

How the former astrobiology professor is charting new territory as a scientist for Amazon Flex.

For as long as he can remember, Jonathan Toner has been drawn to the toughest problems he can find. Where did life originate? What can Earth’s most extreme environments tell us about the planet’s history? Was Mars always the desolate, lifeless place we imagined it to be?

Toner investigated these and other questions as a research assistant professor of Earth and space sciences at the University of Washington (UW), where he also earned a PhD in geophysics. After more than a decade in academia, he joined the Amazon Flex team as a research scientist in 2020. It was an eyebrow-raising move: The two careers have very little overlap in subject matter. But crucially, both require an explorer’s mindset.

Jonathan Toner is seen in Antartica, he is standing on some large rocks wearing a red parka with a mountain range in the background
Jonathan Toner, seen here in Antartica, was a research assistant professor of Earth and space sciences at the University of Washington, where he also earned a PhD in geophysics.

From a young age, Toner was different from his peers. Like other kids, he went to the library to find fun, entertaining reads, but young Jonathan also checked out books on relativity, number theory, and calculus.

“I was pretty curious — maybe a little weird,” he says. “Topics that other people tended to avoid as too difficult, I’d see as a challenge.” When it came to picking a major at the College of New Jersey, the choice was easy: “I’d heard that physics was the hardest, so I did that.”

Making the transition to tech

When grad school beckoned, he decided to combine his passions for science and the outdoors by studying at UW, which is close to the Cascade Range. A few months later, much to his delight, he was conducting field studies at the McMurdo Dry Valleys in Antarctica. It was the first of three expeditions to Antarctica, with the most recent in 2017, funded by NASA and the U.S. National Science Foundation.

I would write an application and say, ‘I’ve got a PhD in geophysics, and I studied planetary science. They’d look at that and be like, ‘Who are you?’
Jonathan Toner

Antarctica is a fertile region for scientific study — particularly the effects of climate change, but also as an analogue for the extreme environments found on Mars or the icy moons of Jupiter or Saturn. In his pursuit of ever-harder questions, Toner moved from physics to geophysics to planetary chemistry to astrobiology. He even investigated the watery origins of life itself.

By 2019, Toner was at the top of his game: a strong publication record and research funding for his ongoing projects at one of the world’s leading institutions for planetary science. But looking into the far future, he didn’t like what he was seeing. He had a strong desire to remain in the Seattle area, but he felt his opportunities to progress in academia were limited, and he had a young family to support, so Toner decided to look for opportunities in the tech industry.

Jonathan Toner is seen here at Don Juan Pond, a shallow hypersaline lake in Antartica
Jonathan Toner, seen here at Don Juan Pond, a shallow hypersaline lake in Antartica, taught himself to build machine learning models and the Python programming language to assist his transition into the tech world.

“I had friends in tech who were doing really well and could live wherever they wanted,” he said. “And I thought to myself, ‘I can do that.’”

He started applying for a few positions, but his situation was unusual, to say the least: “I would write an application and say, ‘I’ve got a PhD in geophysics, and I studied planetary science. They’d look at that and be like, ‘Who are you?’”

This is where Toner’s intellectual tenacity kicked in. He had very little need for machine learning in his field and limited programming experience. So, leveraging his strong academic fundamentals, he taught himself both.

Free ML education resources
New, free offering provides students of any level practical skills and code examples for every stage, from the machine learning problem all the way to deployment.

“I bought a load of machine learning and stats textbooks. I read them. I did the problems. I took about 10 online courses,” he says. “I taught myself to build machine learning models and the Python programming language.” And he did all that in just three months.

And while Toner didn’t have specific experience in the tech industry, he had credentials from other technical fields. In particular, he had developed complex applied models, including thermal and physical diffusion in Martian soils, and thermodynamic models of multicomponent solutions.

“Machine learning is perhaps a step down in complexity from that,” says Toner, “but it’s like trying to gauge the difference in difficulty between playing the violin and the piano.”

That approach worked and, in May of 2020, Toner joined Amazon in the logistics space.

Satisfying two kinds of customers on Amazon Flex

Package delivery to Amazon customers occurs in a variety of ways, including via Amazon Flex. Launched in September 2015, Amazon Flex offers individuals the flexibility to use their own vehicles and set their own schedules while making deliveries as a way of earning extra money. Amazon Flex drivers pick up customer orders from a local Amazon pick-up location and deliver them directly to customers. The Amazon Flex business was built to support Amazon’s growth and meet customer expectations for fast deliveries.

Amazon Flex drivers are our customers too. So, we have this dynamic of multiple customers to satisfy, and that becomes a really intricate science problem. How do you keep everyone happy? It’s a fun problem to think about.
Jonathan Toner

Toner’s overarching goal is to find cost-effective ways to keep Amazon Flex drivers happy and signing up for more blocks, which ensures the service has enough driver capacity to meet projected demand.

“Amazon is customer-obsessed, and you normally think of the customer as the person receiving a delivery. But Amazon Flex drivers are our customers too,” says Toner. “So, we have this dynamic of multiple customers to satisfy, and that becomes a really intricate science problem. How do you keep everyone happy? It’s a fun problem to think about. It occupies all my time.”

As independent contractors, Amazon Flex drivers have the flexibility to accept offers and schedule blocks when it suits them. This means Amazon needs to make sure the program is attractive to drivers, so they feel confident that their time is well-spent with Amazon Flex. This can be through a combination of things, such as block pricing, promotional activity, and desirable delivery windows.

“A lot of our work is around forecasting what Amazon Flex drivers will do, what they want, and ensuring that they have a good experience ,” Toner explains.

The science of forecasting
The story of a decade-plus long journey toward a unified forecasting model.

Amazon Flex has been active in the U.S. since 2017 — and it is growing quickly.

“Given that the number of Flex depots and working drivers on any given week is so large, manual adjustments are impractical,” Toner says. So he is working with Amazon product and business operations teams to create smart, autonomous systems that balance customer needs.

Since joining Amazon Flex, Toner has been promoted to senior research scientist and has created an entire ecosystem of machine learning models and optimization tools. This ecosystem is orchestrated to recommend recruiting actions for Amazon Flex in the US. It considers forecasted delivery demand, predicts capacity contributions from existing drivers and potential new recruits, and predicts how drivers will flow through the onboarding process.

“What intrigues me about this ecosystem of tools is that it is many different models all interacting with each other,” says Toner. “And it’s allowed me to work on so many approaches: Markov chain models powered by logistic regression, recurrent neural networks, dynamic programming to find optimal policies. It definitely keeps me interested.”

Intellectual freedom

Toner also appreciates the latitude he is given to create this smorgasbord of tools.

“Coming from academia, I had some reservations. I was worried about being micromanaged. But I was very pleasantly surprised,” says Toner. “My colleagues are lovely people — so smart and supportive. And, crucially, they allow me freedom to do my thing.”

There's rich science to be done with a company like Amazon that is not available elsewhere. I’ve grown enormously as a scientist because of it.
Jonathan Toner

Right now, Toner’s thing is the ongoing expansion of his suite of models, which for now is focused on the US.

“I want to expand worldwide, and I’ve had interest from Amazon Flex in various countries,” he says.

He is also working on long-lead planning for Amazon Flex, which means modelling driver capacity many years in advance. “This is a very hard question. I mean, where do you even start? To me, that’s a gold mine.”

Career advice
Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, shares her perspective.

Does Toner have any advice for others in academia considering making the move into the tech industry?

“When you're in academia, it really is like an ivory tower, and going to the corporate world can be viewed with pessimism,” he says. “But I would strongly argue against that. There's rich science to be done with a company like Amazon that is not available elsewhere. I’ve grown enormously as a scientist because of it.”

Toner also counsels against limiting yourself based on what you think you can do:

“Science is really about the interesting questions, right? So, focus on the questions. The methods will come.”

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.