Margarida Ferreira is seen sitting cross legged on an empty road on a sunny day, she is smiling and there is a snow covered mountain range and trees in the background
In her role as an applied science intern on the AWS Cloud Operations team, Margarida Ferreira explored program generation methods to streamline the work done by DevOps engineers.

“I want to help people automate boring tasks”

Former Amazon applied science intern Margarida Ferreira conducts research to make complex cloud resources easier to manage.

Amazon Web Services (AWS) helps automate and facilitate much of what people do online, from managing customer data to scientific research. So it’s only fitting that managers of AWS cloud resources (eg DevOps engineers) should get an assist from machine learning on some of their most common tasks. In her role as an applied science intern on the AWS Cloud Operations team, Margarida Ferreira explored program generation methods to streamline the work done by DevOps engineers.

DevOps engineers provision, operate, and manage applications on AWS. They deploy upgrades, monitor security, and make sure cloud resources are always operating optimally. As with any job, their day might involve some repetitive work, whether the AWS application involves hundreds of or even more than 10,000 machines.

The AWS Cloud Operations team owns tools that allow DevOps engineers to safely operate large and complex applications. With the help of a team of applied science interns like Ferreira, AWS Cloud Operations are using various automation techniques to find time-saving opportunities in cloud management.

Constraint programming for automating repetitive tasks

Ferreira employed a novel approach to simplify AWS systems management, combining program synthesis and constraint programming to automate common tasks. It’s an approach she and others believe might be the right one given its ability to guarantee a desired outcome or goal.

Margarida Ferreira is seen standing outside in a green sweater, she is smiling into the camera and there are trees and snow covered ground behind her
Part of Margarida Ferreira's research involves constraint programming, which can automatically generate program scripts given a specific set of restrictions.

“Program synthesis is the task of automatically generating a computer program in a programming language from a description of the desired behavior, without requiring manual coding by a programmer,” Ferreira explains. “It aims to bring the power of computation to a wider audience, by bridging the gap between a problem's description in human-readable terms and the actual computer code that implements the solution. It’s useful for skilled programmers too, by allowing them to automate the implementation of repetitive, uninteresting snippets of code.

“I love the concept of synthesis — the idea that you can help people automate boring tasks that people don't want to do manually.”

As a PhD candidate at Carnegie Mellon University (CMU), Ferreira specializes in automated reasoning and program synthesis. Part of her research involves constraint programming, which can automatically generate program scripts given a specific set of restrictions.

These scripts — often based on the analysis of log files from common, manual tasks — can then be used to automate future tasks, such as creating and setting up an Elastic Compute Cloud (EC2) instance. The process essentially teaches the computer to program itself using an example or demonstration.

From physics to computers

Born and raised in Portugal, Ferreira began her higher education as a physics major at the Instituto Superior Técnico in Lisbon. However, after enrolling in a computer programming class, she quickly switched majors to computer science and engineering.

She loved the challenge of thinking about problems in a structured way, and how an algorithm or sequence of steps could help her solve them. Ferreira earned both a bachelor’s and master’s in computer science and engineering from the Instituto Superior Técnico.

After graduation, Ferreira took the advice of a mentor to move to the U.S., enrolling in a dual-PhD program in computer science and engineering at CMU and the Instituto Superior Técnico. She splits her time and coursework between the U.S. and Lisbon and is due to complete her dual PhDs in 2026.

Related content
As a senior principal applied scientist at Amazon Web Services, Leino is continuing his career as a leading expert in program verification.

At CMU, Ferreira developed an early interest in program synthesis and constraint programming. Her thesis goal is to use formal methods, theoretical guarantees, and proofs to improve and optimize networks in ways that make them more efficient.

Early in 2023, Ferreira realized she wanted to balance her academic pursuits with industry experience. After consulting with her advisor, Ruben Martins, an assistant professor at CMU, Ferreira was connected to Daniel Kroening, a senior principal scientist with Amazon’s AWS Cloud Operations Team and the internship program lead. Kroening and the AWS Cloud Operations team were looking to apply constraint programming to automate management of AWS cloud resources, and Ferreira was a natural fit.

“Amazon wants to make computing available to an audience that’s as large as possible and make the computing products as easy to use as possible,” Kroening says. “Our goal with the cloud ops internship program is to enable customers to use AWS products without programming by teaching computers to program themselves.”

Related content
The service, which is now generally available, uses machine learning to make it faster and easier to catalog, discover, share, and govern data.

Ferreira interviewed with other companies besides Amazon, but said the conversation with Kroening stood out.

“Daniel was very good at letting me know what’s special about AWS: the impact,” Ferreira says. “Millions of people use AWS every day. That’s what made me chose to work at Amazon. The research I did can impact the lives of so many people.”

Program synthesis: accuracy guaranteed

DevOps engineers can benefit from automation, but they also need to be able to trust in how a task is expedited behind the scenes. A manager might use the AWS interface to open an S3 bucket, for example, and verify whether a piece of data is stored correctly. But if there are hundreds of those buckets, checking each one can quickly become a laborious task.

Using the log files of the manual tasks as constraints, Ferreira was able to use program synthesis to create an “automation runbook”, a script that can create a program to automate a cloud management task with a guarantee of accuracy.

“Program synthesis gives you a formal guarantee in the form of a mathematical proof that goes step by step in showing that the program that it's creating is doing what you asked,” Ferreira says.

The method adds an essential level of confidence for managers who need to ensure their cloud systems are running optimally.

“The whole value prop is that the customer can take an automation runbook as is without having to double, triple, or quadruple check it. With constraint programming, the runbook is guaranteed to give you an answer, but only one that satisfies the constraints,” adds Kroening.

Pure research, palpable impact

Ferreira says she thoroughly enjoyed her experience at Amazon, in part because she found it was somewhat freer than she expected. She said she saw the research process at Amazon more like that of academia, where research is driven more by problem statements, hypotheses, and general curiosity.

Related content
Chamsi Hssaine and Hanzhang Qin, the inaugural postdoctoral scientists with the Supply Chain Optimization Technologies team, share what they learned from Amazon scientists.

“I expected I would have to justify my research decisions in some way with Amazon products,” Ferreira says. “That was definitely not the case, and that was pleasantly surprising to me.”

Kroening says science interns at Amazon are encouraged to do research that can be published. “This is very much a science internship as opposed to, say, a software engineering internship,” he points out.

Regarding her longer-term plans, Ferreira emphasized her desire to be a role model for others from her home country who may be intimidated by moving to a large country to pursue their careers.

“Some people who come from a small country like Portugal don’t always feel they can come to a country like the United States and have a bigger impact,” she says. “Maybe they’re afraid or just unsure that they would be successful here. I want to appeal to people like that and say, hey, you should try it. It might be very rewarding, like it was for me.”

Amazon offers internships year round, and projects will depend on a student’s area of research and interest, as well as the team they're placed on.

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, NY, New York
An AS III will lead complex projects in the GenAI space, specifically related to LLM-backed conversational agents that interact with multiple corporate data sources. The team works on RAG; QA from very rich documents, containing tables, plots, graphs, etc., multimodal documents, datatabase etc.; orchestration and planning multi-step actions; RAI aspects such as hallucination reduction and protection from attacks; and more. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
AU, NSW, Sydney
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. What if I don’t meet all the requirements? That’s okay! We hire people who have a passion for learning and are curious. You will be supported in your career development here at AWS. You will have plenty of opportunities to build your technical, leadership, business and consulting skills. Your onboarding will set you up for success, including a combination of formal and informal training. You’ll also have a chance to gain AWS certifications and access mentorship programs. You will learn from and collaborate with some of the brightest technical minds in the industry today.
US, WA, Bellevue
Are you seeking an environment where you can drive innovation? Do you want to apply inference, advanced statistical modeling and techniques to solve world's most challenging problems in? Do you want to play a crucial role in the future of Amazon's Retail business? Do you want to be a part of a journey that develops a new technology from scratch for answering critical business question in Amazon Retail? Every time an Amazon customer makes a purchase, a number of systems are involved: these systems help optimize acquisition, enable a number of purchase options, ensure great , store products so they are available for fast delivery, and minimize package frustration. The Technology (SCOT) Group develops and manages these systems. We are central to Amazon customers' ability to find what they want and get it when they want it. The SCOT Lab team within SCOT Forecasting is responsible for designing and executing the inference and experimentation systems that measure the impact of SCOT initiatives. We are looking for research scientists to drive innovation in SCOT by developing/building a new scientific approach and pushing our system further upstream in the innovation process. Key responsibilities of a Research Scientist in IPC Lab include: - Developing and validating new statistical, causal, and machine learning techniques, and build solution prototypes to drive innovation - Working with technical and non-technical customers to design experiments and communicate results - Collaborating with our dedicated software team to validate production implementations for large-scale data analysis - Developing an understanding of key business metrics / KPIs and providing clear, compelling analysis that shapes the direction of our business - Presenting research results to Amazon science community - Leading training and informational sessions on our science and capabilities - Your contributions will be seen and recognized broadly within Amazon, contributing to the Amazon research corpus and patent portfolio. To help describe some of our challenges, we created a short video about at Amazon - http://bit.ly/amazon-scot
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. Concretely, you will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product. You will also be challenged to think several steps ahead so that the solutions you are building today will scale well with future growth and objective (e.g.: sustainability). You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. You will have the opportunity to thrive in a highly collaborative, creative, analytical, and fast-paced environment oriented around building the world’s most flexible and effective transportation planning and network design management technology. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of 15 scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues.
US, WA, Bellevue
WW Amazon Stores Finance Science (ASFS) works to leverage science and economics to drive improved financial results, foster data backed decisions, and embed science within Finance. ASFS is focused on developing products that empower controllership, improve business decisions and financial planning by understanding financial drivers, and innovate science capabilities for efficiency and scale. We are looking for an outstanding data scientist to lead high visibility initiatives for forecasting Amazon Stores' financials. You will develop new science-based forecasting methodologies and build scalable models to improve financial decision making and planning for senior leadership up to VP and SVP level. You will build new ML and statistical models from the ground up that aim to transform financial planning for Amazon Stores. We prize creative problem solvers with the ability to draw on an expansive methodological toolkit to transform financial decision-making with science. The ideal candidate combines data-science acumen with strong business judgment. You have versatile modeling skills and are comfortable owning and extracting insights from data. You are excited to learn from and alongside seasoned scientists, engineers, and business leaders. You are an excellent communicator and effectively translate technical findings into business action. Key job responsibilities Demonstrating thorough technical knowledge on feature engineering with large datasets, effective exploratory data analysis, and model building using industry standard ML models Working with technical and non-technical stakeholders across every step of science project life cycle Collaborating with finance, product, data engineering, and software engineering teams to create production implementations for large-scale ML models Innovating by adapting new modeling techniques and procedures Presenting research results to our internal research community
IL, Haifa
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows from Originals and Exclusive content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at any time and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), natural language processing (NLP), multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s recommendation systems, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Lead cutting-edge research in computer vision and natural language processing, applying it to video-centric media challenges. - Develop scalable machine learning models to enhance media asset generation, content discovery, and personalization. - Collaborate closely with engineering teams to integrate your models into production systems at scale, ensuring optimal performance and reliability. - Actively participate in publishing your research in leading conferences and journals. - Lead a team of skilled applied scientists, you will shape the research strategy, create forward-looking roadmaps, and effectively communicate progress and insights to senior leadership - Stay up-to-date with the latest advancements in AI and machine learning to drive future research initiatives. About the team At Prime Video, we strive to deliver the best-in-class entertainment experiences across devices for millions of customers. Whether it’s developing new personalization algorithms, improving video content discovery, or building robust media processing systems, our scientists and engineers tackle real-world challenges daily. You’ll be part of a fast-paced environment where experimentation, risk-taking, and innovation are encouraged.
BR, SP, Sao Paulo
The Transportation Data Scientist is responsible for leveraging data analytics and machine learning techniques to gain insights and drive decision-making for transportation-related challenges. This role involves working closely with all miles from transportation, planning areas, and engineering teams to identify, collect, and analyze relevant data to uncover patterns, trends, and predictions that can optimize transportation systems and services. Key job responsibilities Collaborate with cross-functional teams to understand transportation challenges and identify data sources that can provide valuable insights Design and implement data collection, processing, and storage pipelines to gather and manage large-scale transportation data (e.g., traffic sensor data, vehicle telematics, rideshare data, infrastructure utilization, etc.); Develop advanced analytical models and machine learning algorithms to analyze transportation data and generate predictive insights (e.g., demand forecasting, route optimization, infrastructure maintenance planning, etc.) Visualize and present data-driven insights and recommendations to stakeholders, including transportation miles (ATS, AMZL, 3P carriers and Air), operations teams, and decision-makers. Stay up-to-date with the latest trends, technologies, and best practices in transportation data science and analytics; Contribute to the development and improvement of the organization's transportation data strategy and capabilities.
FR, Courbevoie
Amazon launched the Generative AI Innovation Center (GenAIIC) in June 2023 to help AWS customers accelerate the use of generative AI to solve business and operational problems and promote innovation in their organization. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI.(https://press.aboutamazon.com/2023/6/aws-announces- generative-ai-innovation-center). We’re looking for Data Scientists capable of using generative AI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities As a Data Scientist, you will - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train or fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The Generative AI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video applied scientist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. Key job responsibilities We are seeking a science leader with deep knowledge of multi-modal content understanding, including Vision Language Models (VLMs) and Multi-Modal Language Models (MMLMs). You will help drive the alignment of Engineering roadmaps to support scientific capabilities, and you will be a voice of future technology for our Product partners. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! For examples of our work, please see a selection of our publications from ECCV, ICCV and ICLR: • https://www.amazon.science/publications/diffsign-ai-assisted-generation-of-customizable-sign-language-videos-with-enhanced-realism • https://www.amazon.science/publications/text-guided-video-masked-autoencoder • https://www.amazon.science/publications/look-globally-and-locally-inter-intra-contrastive-learning-from-unlabeled-videos About the team Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. On Prime Video, customers can find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies Road House, The Lord of the Rings: The Rings of Power, Fallout, Reacher, The Boys, and The Idea of You; licensed fan favorites Dawson’s Creek and IF; Prime member exclusive access to coverage of live sports including Thursday Night Football, WNBA, and NWSL, and acclaimed sports documentaries including Bye Bye Barry and Federer; and programming from partners such as Apple TV+, Max, Crunchyroll, and MGM+ via Prime Video add-on subscriptions, as well as more than 500 free ad-supported (FAST) Channels. Prime members in the U.S. can share a variety of benefits, including Prime Video, by using Amazon Household. Prime Video is one benefit among many that provides savings, convenience, and entertainment as part of the Prime membership. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles, including blockbusters such as Challengers and The Fall Guy, via the Prime Video Store, and can enjoy content such as Jury Duty and Bosch: Legacy free with ads on Freevee. Customers can also go behind the scenes of their favorite movies and series with exclusive X-Ray access. For more info visit www.amazon.com/primevideo.