Amazon Glamazon Gay Pride Month LGBTQIA+ Black Lives Matter
From top left to bottom right: Luyolo Magangane, applied scientist; Ruiwei Jiang, research scientist; Sheeraz Ahmad, applied scientist; Liz Dugan, user experience researcher; Shane McGarry, data scientist; Abhinav Aggarwal, applied scientist.
Credit: Glynis Condon

Pride and prejudice: 6 Amazon scientists share their experiences

Scientists from glamazon, Amazon’s LGBTQIA+ affinity group, say this year's Pride Month is as much about solidarity as it is about celebration.

In most cities around the world June is considered Pride Month, where people celebrate diversity and inclusion. It usually culminates in a parade or march to promote the self-affirmation, equality, and visibility of the lesbian, gay, bisexual, transgender, queer or questioning, intersex, and asexual or allied (LGBTQIA+) community.

At Amazon, it's no different. There's a community of more than 7,000 employees from across the globe who are part of glamazon, an affinity group and employee network, whose mission is to connect those interested in LGBTQIA+ issues to company resources and to each other and to showcase Amazon’s acceptance in communities worldwide.

Given current events, particularly global protests resulting from the videotaped killing of George Floyd by law enforcement officials and the recent U.S. Supreme Court ruling upholding LGBTQIA+ equality, we asked some of the scientists within this affinity group about the significance of this year’s Pride Month.

Abhinav Aggarwal, applied scientist, Alexa Trust

Abhinav Aggarwal (pronouns: he/him/they/them) joined Amazon about nine months ago, after obtaining his PhD in computer science from the University of New Mexico in 2019. His work focuses on building customer trust by designing privacy-preserving machine learning algorithms for handling customer data.

Abhinav Aggarwal, applied scientist, Alexa Trust
Abhinav Aggarwal, applied scientist, Alexa Trust

“Since I joined Amazon, I’ve only had a very passive interaction with glamazon through emails. But I feel like the variety of topics discussed there is absolutely amazing. It’s not just LGBTQIA+ issues; there are thoughts about body positivity, gender pronouns, having pronouns on badges, and issues around diversity and inclusion,” he said.

“But I’d like to see more gender-neutral restrooms in the buildings and use of the ‘they’ pronoun by default,” he says. “Whenever I refer to someone I don’t personally know or even know of at all, I default to using ‘they/them’ as a pronoun. It would be nice to see this as common practice and not assuming someone’s gender based on familiarity with the name, which aligns with the removal of unconscious bias and helps with acceptance.”

With privacy and fairness in AI becoming an increasingly important topic, Aggarwal sees similar issues within his field.

“You don’t want your models for services like Alexa to give you results that are gender-biased, especially as we move towards a more gender-neutral world,” Aggarwal explains. “Ideally, our models should produce gender-agnostic results, and we must work backwards from this goal when defining gender-based fairness. That’s something I’ve felt a lot of pushback with within the industry, because the problem becomes far more complex if you talk about gender neutrality and the continuous spectrum of gender, instead of just the binary male or female.”

Aggarwal sees celebrating Pride Month as a step towards this awareness.

“I think these movements are absolutely necessary because they call out basic human rights against discrimination. They call out a very fundamental way of how we think we should be treated. LGBTQIA+ is a tag to help identify and understand ourselves better. It doesn’t change who we are as a person. It doesn’t change how technically advanced or skilled we are. It doesn’t change how we are going to perform at Amazon,” Aggarwal emphasizes.

“If the person is a good human being at heart, helps society and contributes to the general well-being of the nation, that’s what’s more important, independent of whether they are gay, lesbian, Black, white or associate themselves in any other way. Acknowledgement of this label-agnostic human existence is much more than man-made tags.”

Sheeraz Ahmad, applied scientist, Amazon SageMaker Ground Truth

Sheeraz Ahmad (pronouns: he/him) joined Amazon more than four years ago as a research scientist. Today, he works as an applied scientist on Amazon SageMaker Ground Truth team, an AWS data-labeling service that makes it easy to build highly accurate training data sets for machine learning.

Sheeraz Ahmad, applied scientist, Amazon SageMaker Ground Truth
Sheeraz Ahmad, applied scientist, Amazon SageMaker Ground Truth

Prior to Amazon, he received his PhD in computer science from the University of California San Diego (UCSD), where he focused on computational modeling of human and animal behavior in different domains, with the goals of gaining insights into the inner workings of the brain and developing behaviorally inspired machine learning models.

Ahmad, who grew up in Kanpur, India, previously earned his bachelor’s degree in electrical engineering from the prestigious Indian Institute of Technology Kanpur.

In Kanpur, Ahmad's experience was that being on the LGBTQIA+ spectrum was not well accepted, and he didn’t have many role models to follow. That changed after college when he moved to a larger city, Bangalore, and especially when he attended UCSD, where “I came across people who were out and proud and doing amazing things in life.”

Now, as an active member of Amazon’s glamazon affinity group, Ahmad is a role model himself. When he first joined Amazon, he appreciated glamazon’s support and attended events but found socializing difficult in some of the larger events. So for more than four years now, he’s organized monthly game nights, where a smaller group of glamazon members in Seattle get together to socialize and play board games. Even during the COVID-19 pandemic the tradition has continued, though online.

Pride Month is especially meaningful to Ahmad, but this year “the tone is more somber, understandably so.”

“There’s a lot going on, and as much as there is to celebrate, there’s so much more to be done. This month, as a gay man, my focus is more on being an ally for people who are going through their own struggles,” he says. “Gay men have faced discrimination and hardship, and we need to lean into those experiences, remember all the pain we’ve gone through, and be there for the womxn and our African-American brothers and sisters.

“I’m sharing with my friends, who tend to be somewhat conservative, how I have felt, based on my own experiences, and trying to relate how all members of the LGBTQIA+ community are feeling now, especially those who are African American. It’s important to be there for them, to be an ally, providing solidarity.”

“This year," Ahmad says, “feels less about celebration and more about solidarity.”

Liz Dugan, user experience researcher, Amazon Alexa

Liz Dugan (pronouns: she/her) joined Amazon earlier this year and during her onboarding experience learned about the glamazon affinity group. The voice user interface researcher, who earned a bachelor’s degree in psychology and a master’s degree in cognitive psychology from the University of Oklahoma, self-identifies as a queer, bisexual woman. She immediately felt welcomed by glamazon members.

Liz Dugan, user experience researcher, Amazon Alexa
Liz Dugan, UX researcher, Amazon Alexa

“Since I’ve been here, I’ve noted more and more people joining the group, and everyone is treated the same. People reach out and say, ‘How can we help you? Is there anything we can provide you? Please let us know if there’s anything you need.’ So you immediately feel as though this is a safe place.”

On this day, despite recent events, Dugan is more upbeat, as the Supreme Court has just ruled that a landmark civil-rights law protects gay and transgender workers from workplace discrimination. “An employer who fires an individual merely for being gay or transgender defies the law,” Justice Neil M. Gorsuch wrote for the majority in the court’s 6-to-3 ruling.

“So the LGBTQIA+ community just had a very historic win today. We wouldn’t be experiencing the moment we are today without Stonewall,” she says, referring to the 1969 New York City Stonewall riots that are considered one of the most important events leading to today’s fight for LGBTQIA+ rights.

“Everything we have today started with Stonewall, which was a riot started by trans people of color. So today we can live publicly and authentically and mostly safe from verbal abuse because of Black trans activists. Yet today we are still seeing those same populations being actively targeted and murdered without any real recourse or much publicity. Just within the past few days two Black trans women were murdered, and I’ve seen no one talk about it.”

“Some of the freedoms we enjoy today are because of Black trans women, and yet we continue to fail them as a privileged group of gay mostly white individuals, and we’re not doing enough to support the Black Lives Matter movement now. …We need to return to our roots and lift up our brothers and sisters who are suffering. They started the movement for us, and we need to be there for them now.”

Like other colleagues, Dugan feels like this year’s Pride Month is less a time to celebrate and more a time to continue pushing for progress.

“It’s a moment to return to our community’s roots. We still have problems,” she says. “We still have youth who don’t have homes and are struggling; we still have people who are discriminated against; we still have people who are being brutalized and murdered. So while we can be proud of what we’ve accomplished, we still have work to do. We have to carry our pride but still get our hands dirty. Stonewall wasn’t a celebration. Stonewall was a riot. So we have to keep fighting.”

Ruiwei Jiang, research scientist, Alexa Domains - HHO

Before joining Amazon as a research scientist, Ruiwei Jiang (pronouns: she/her) studied computational genetics in college, working in particular on human DNA. Her studies explored the adverse impact of pollution on human genetic encoding, comparing the short- and long-term effects of living in a polluted versus non-polluted environment.

Ruiwei Jiang, research scientist, Alexa Domains
Ruiwei Jiang, research scientist, Alexa Domains

“It might not sound super relevant to Alexa, but you're doing computation decks, working with a lot of data, writing code and doing a lot the analysis and building out of models, so that sort of became transferable knowledge,” she says.

Her role within the Alexa Household Organization, whose mission is to help Alexa help families stay organized and connected with one another, is to maintain the natural-language-understanding framework for features such as reminders, calendar tasks, weather, and recipes, as well as for creating models to improve customer retention.

“The world is moving towards conversational AI,” she says, “and it’s cool to be able to say you’re working in this field and developing models that are actually being used by customers, who are directly benefiting from it.”

Jiang is based in Amazon’s Vancouver office, where she’s experienced many positive actions from the glamazon affinity group, which have warmed her heart.

“They organize meetings in the office on a Sunday afternoon or Saturday morning, before the Pride parade, and hand out stickers. It’s a small thing, but it all adds up. Previous companies I’ve worked at have never really stood up as a corporation and been like ‘hey, we’re going to do something together for the Pride parade’. But at Amazon, it’s like ‘hey, let’s get together and show our support and be part of the community’, which is really inspiring.”

As a self-proclaimed ally, she can relate to the LGBTQIA+ community. “Growing up in Canada as a Chinese Canadian, I know how it feels to be to be left out and stigmatized and not feel like you're part of the group, or welcome. So I can imagine how other groups of people feel, even if I don’t have full visibility into all the problems and discrimination that they face. I think it’s important to stand up for what I think is right and not just have those values and keep it to myself.”

In light of recent events, she’s been impressed by the top-down communication at Amazon, from vice president to director level, with each leader taking the time to listen to employees and expressing their views that what’s happening to Black people in the U.S. isn’t right.

“We need to make the workplace more human than it is right now. We spend eight hours a day here, and we make friends. It’s also about keeping that diversity in hiring, which I think is one of the best ways to break down barriers, by having cross-community, cross-culture, cross-gender friendships and communications.”

Mentoring is another way Jiang promotes diversity and inclusion. “I’m what they call ‘women in tech’, and I’ve been in my career for about six years, so I think it’s important to mentor other women and girls, so they don’t feel left out or scared.”

Luyolo Magangane, applied scientist, Amazon Elastic Compute Cloud (EC2)

Located in South Africa, Luyolo Magangane (pronouns: he/him) joined Amazon just over a year ago, after a friend referred him for a machine learning role.

Luyolo Magangane, applied scientist, Amazon Elastic Compute Cloud (EC2)
Luyolo Magangane, applied scientist, Amazon Elastic Compute Cloud (EC2)

“I’m in the placement team, and we try to help customers have the best experience possible whenever they use AWS. So if a customer launches an EC2 instance, my team is in charge of the decision-making algorithm that chooses where to place that instance,” he explains.

Prior to Amazon, he studied electrical and computer engineering at the University of Cape Town and obtained a master’s degree in artificial intelligence at Stellenbosch University. He had a few jobs within the industry before joining Amazon.

He’s a member of Amazon’s glamazon affinity group, where he identifies as an ally and believes it’s important that others do too.

“Everyone should believe in the respect of the humanity of people first. When you meet someone, you have no context of their background or how they grew up. The only thing you know is that you are human, and they're also human. Your sexual orientation, gender identity, or racial identity doesn’t matter. It becomes much harder to be bigoted and to oppress someone if everyone starts from that perspective,” he says.

Magangane believes his support for the LGBTQIA+ community stems from his childhood, during which South Africa saw the end of apartheid, a system of institutionalized racial segregation from 1948 until the early 1990s.

“That was when [Nelson] Mandela was released from prison. That was when you could see the tides of change coming, from minority rule to democracy, which was incredible,” he explains.

“Every day I was encouraged to dream. And so, the benefit of being born in an environment like that led to me being born very free of prejudice. But because, historically, I come from a somewhat conservative background, I have a lot of friends and family who I care about who aren't as open minded as I think they could be.”

When he thinks about Pride and the Black Lives Matter movement and what society can learn from these events, he quotes Killer Mike, an American rapper, songwriter, actor, and activist: “It’s to ‘strategize, organize, and mobilize’, peaceful protests. It’s always done through people organizing, coming out, being peaceful, and saying that we believe what's happened is wrong and things need to change,” he says.

“I think part of that is not tolerating bigotry, which is one of the challenges you have to deal with in the Black community. You’re taught to pick and choose your battles, but you end up tolerating all those things that you don't battle, which only encourages it. You have to look bigotry in the eye and demand change. You cannot tolerate any of that. Even if institutions have to change, we’re demanding the change now.”

Shane McGarry, data scientist, Amazon Fashion

Shane McGarry (pronouns: they/them) joined Amazon earlier this year as a data scientist, focused on improving the company’s fashion catalogue using machine learning and other techniques “to create a stellar experience for our customers.”

Shane McGarry, data scientist, Amazon Fashion
Shane McGarry, data scientist, Amazon Fashion

McGarry, who identifies as non-binary, meaning they (McGarry prefers the pronouns they/them to he/she, thus the use of their, they, and them in this section) don’t exclusively identify as a man or a woman, recently earned their PhD in computer science from Maynooth University, about 25 minutes outside Dublin, Ireland, where their thesis work focused on improving the search experience within digital research environments (historical records, etc.) through visual search techniques.

Before joining Amazon, McGarry held several software development roles, where they encountered challenges.

“I’m non-binary, and I’m not traditionally masculine in any way shape or form, from my speech patterns to the way I carry myself,” McGarry explains. “What I found is that I was often ignored in ways that my colleagues with the same level of experience weren’t. When working with clients, if I dealt with them over email, they were receptive to my ideas, but when we started talking over the phone and they would hear my voice, suddenly they would become skeptical of what I was saying.”

McGarry says they encountered similar challenges with management.

“There were a lot of times when my opinion was brushed to the side, despite being proven consistently right. I would say ‘I see a problem; I think we should do this differently.’ They would ignore me, and no matter how many times I was proven right, I was never taken seriously.”

Affinity groups and diversity at Amazon

After joining Amazon, McGarry became involved in glamazon, one of 12 affinity groups within the company aimed at bringing employees together across businesses and locations around the globe. They’ve been impressed with glamazon and with their organization’s response to recent events related to the killing of George Floyd and how it’s recognizing Pride Month.

“The management within Amazon Fashion has really impressed me, especially within the past few weeks with everything that’s been occurring. …The president of our business had an all-hands meeting where she invited a global diversity and inclusion leader who has dealt with racial trauma. She talked to us about racial trauma, what it is, and how it affects people.”

Asked about lessons we can derive from recent current events, McGarry says, “In terms of the Black Lives Matter movement, it’s really important for us as individuals, as well as the company as a whole, to examine our racial biases that result from growing up in a culture that favors white people. Having a racial bias doesn’t make you a bad person. But refusing to acknowledge it, to examine it, and to work towards unlearning it, that’s where the problem lies.”

McGarry, who grew up in northeast Ohio within a deeply religious family, understands firsthand the challenges of dealing with bias and prejudice. For McGarry, Pride Month represents an opportunity to celebrate who they are without fear.

“As someone who grew up in the eighties and nineties in a deeply religious home where being gay wasn’t acceptable, and hearing messages from the community and church that gay people are evil, that God hates them, you get inundated with all of these negative messages, and you really begin to hate yourself, who you are, and you live in constant fear. So for me, Pride Month is about letting a lot of that go and celebrating yourself for who you are and really embracing it. At the same time, we have to remember our history, how far we’ve come, but yet how far we still need to go.”

Read more stories like this in our Working at Amazon section, or take a look at some of our available career opportunities in science.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Do you enjoy solving challenging problems and driving innovations in research? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. As a Research Science intern focused on Operations Research and Optimization intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. As you navigate through complex algorithms and data structures, you'll find yourself at the forefront of innovation, shaping the future of Amazon's fulfillment, logistics, and supply chain operations. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions. You'll then immerse yourself in a world of data, leveraging your expertise in optimization, causal inference, time series analysis, and machine learning to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Causal Inference, Time Series, Algorithms and Data Structures, Statistics, Operations Research, Machine Learning, Programming/Scripting Languages, LLMs In this role, you will gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life Develop and apply optimization, causal inference, and time series modeling techniques to drive operational efficiencies and improve decision-making across Amazon's fulfillment, logistics, and supply chain operations Design and implement scalable algorithms and data structures to support complex optimization systems Leverage statistical methods and machine learning to uncover insights and patterns in large-scale operations data Prototype and validate new approaches through rigorous experimentation and analysis Collaborate closely with cross-functional teams of researchers, engineers, and business stakeholders to translate research outputs into tangible business impact
US, CA, San Francisco
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Must be eligible and available for a full-time (40h/ week) 12 week internship between May 2026 and September 2026. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Unleash Your Potential at the Forefront of AI Innovation At Amazon, we're on a mission to revolutionize the way the world leverages machine learning. Amazon is seeking graduate student scientists who can turn revolutionary theory into awe-inspiring reality. As an Applied Science Intern focused on Information and Knowledge Management in Machine Learning, you will play a critical role in developing the systems and frameworks that power Amazon's machine learning capabilities. You'll be at the epicenter of this transformation, shaping the systems and frameworks that power our cutting-edge AI capabilities. Imagine a role where you develop intuitive tools and workflows that empower machine learning teams to discover, reuse, and build upon existing models and datasets, accelerating innovation across the company. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Neural Networks/GNNs, Data Structures and Algorithms, Time Series, Machine Learning, Natural Language Processing, Deep Learning, Large Language Models, Graph Modeling, Knowledge Graphs and Extraction, Programming/Scripting Languages In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). A day in the life About the team Amazon’s AGI team is focused on building foundational AI to solve real-world problems at scale, delivering value to all existing businesses in Amazon, and enabling entirely new services and products for people and enterprises around the world.
US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA; Pittsburgh, PA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning.
US, WA, Seattle
Unlock the Future with Amazon Science! Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more. At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.