Rustan Leino, senior principal applied scientist, is seen standing in a lily field, he is smiling toward the camera
Rustan Leino is a senior principal applied scientist in the Automated Reasoning Group at Amazon Web Services. He specializes in program verification, the science of mathematically proving that a software program always functions correctly.

Rustan Leino provides proof that software is bug-free

As a senior principal applied scientist at Amazon Web Services, Leino is continuing his career as a leading expert in program verification.

In Rustan Leino’s ideal world, computer software always works as intended. In the real world, though, he knows that software engineers are people like him — they make mistakes as they write code. Some of these mistakes escape detection. As a result, the world is full of buggy software.

Leino is a senior principal applied scientist in the Automated Reasoning Group at Amazon Web Services (AWS) in Seattle. He specializes in program verification, the science of mathematically proving that a software program always functions correctly. The process of program verification, he noted, is expensive in terms of the hours spent on it — including training. Because of that, it’s done selectively.

Automated reasoning at Amazon
Meet Amazon Science’s newest research area.

“Software that is very important is a great place for verification, and AWS has many pieces of its infrastructure where you just don’t want any mistakes,” he said. “If you want to send a rocket to Mars, you get one chance. You really want it to work. AWS is a little bit like that — you really want it to work.”

Leino spent more than 20 years in industrial research labs studying and developing methods and programming languages for program verification. He joined AWS in 2017 for the opportunity to apply program verification in a setting with real-world impact while continuing to conduct research.

“It is a very happy place for me and a good match with the sorts of things I have expertise in and that AWS wants to do,” he said.

Programming math

Unbeknownst to Leino, he was on the road to a career in program verification as a pre-teen in the early 1980s. He loved math and found a parallel interest in the logic of computer programming. He spent hours each day writing gaming software in the programming language Basic. When he entered the University of Texas at Austin (UT Austin) for his undergraduate degree, he knew he wanted to study computers.

“I don’t think I really knew what computer science was other than it involved programming, but there was a richness to computer science that was revealed to me in college,” he said. “There was one class I took that had to do with program verification, and I really liked it.”

Program verification is a way to catch the mistakes software engineers make when they write programs. At one level, automated program verification tools work in a similar fashion to the way a spell checker works in a word processor.

Rustan Leino on writing verified software for production

“But in the word-processing sense, there’s no equivalent tool of something that says, ‘I’m trying to get my program to do the following,’ or, ‘I’m trying to make sure that my program always makes this particular property hold,’” Leino explained.

Such properties, he explained, are called invariants. To enforce invariants, programmers write specifications — that is, definitions of what a program is supposed to do. Program verification tools called verifiers compare a software program with its invariant specifications and try to find discrepancies or bugs.

“If you can mathematically prove that the program always lives up to those specifications — the things that you’re trying to establish — then you say that you verify the program, or you prove the program correct,” Leino said.

From industry to academia and back

Upon graduation from UT Austin in 1989, Leino got a job as a software developer at Microsoft, where he worked on the Windows operating system. While he was there, he became convinced that formally proving program correctness was going to become more important as computers grew increasingly interconnected.

At the time, program verification was confined to academic and industrial research labs. Leino went to the California Institute of Technology to study it, earning a master's and PhD in computer science along the way.

“When I think back to that, what on earth did I know about research at that time? I don’t know, but somehow in my head, I thought this is what I really wanted to do,” he recalled.

Rustan Leino is seen giving a speech at a wedding, he is holding a microphone and is looking to the side
Rustan Leino says his tenure with AWS has helped move "from using Dafny in research projects to using it in projects with industrial impact."
Sweet Face Photography

During an internship at the Digital Equipment Corporation (DEC), he worked with the late Greg Nelson, a computer scientist who was a pioneer in program verification. DEC hired Leino out of graduate school, and he, Nelson, and their colleagues developed tools such as the Extended Static Checker for Java, a verifier that checks for errors in programs written in Java.

“When a mentor believes in you and lets you develop what you’re good at, it really makes a huge difference,” Leino said of his time working with Nelson. “He did that for me.”

Leino returned to Microsoft in 2001 to join the company’s research lab. There, he developed the intermediate verification language Boogie, which is a building block for many modern program verifiers. Boogie also underpins the programming language Dafny, which Leino developed as a framework to do program verification from the ground up, instead of awkwardly bolting tools onto existing languages.

The research and scientific communities found Dafny useful for tackling a raft of specification challenges. Leino used it to teach program verification to computer scientists, noting that the built-in verification tools encourage programmers to write correct code. Over time, he added more functionalities to Dafny to address other specification challenges of interest to the research community.

“One day I woke up and realized this Dafny thing, it really can do a lot,” he said.

Applied science at AWS

AWS recruited Leino to apply his research on program verification to the Java programs that are mission critical for both internal and external AWS customers. The company saw the value of program verification for its customers and was willing to invest in the science behind it, Leino said.

What’s exciting is that we have now moved the needle from using Dafny in research projects to using it in projects with industrial impact.
Rustan Leino

A few years ago, he was working on a project at AWS that appeared well suited to the capabilities of Dafny. Since then, he’s been working on Dafny full time.

“What’s exciting is that we have now moved the needle from using Dafny in research projects to using it in projects with industrial impact,” Leino said.

For example, his team worked with an engineering group to use Dafny in writing the open-source AWS Encryption Software Development Kit (SDK) for the .NET developer platform. The AWS Encryption SDK is a client-side encryption library that simplifies the tasks of encrypting and decrypting data in cloud applications.

“It’s tricky to apply encryption correctly,” noted Leino. “If customers are going to rely on this library, then it makes sense to go beyond the already rigorous testing that software engineers always do. Program verification steps up the game by providing proofs that the library holds certain properties.”

The specification for one part of the library, for example, holds that when plaintext data is encrypted and broken down into smaller packets for transfer on a wire from one place to another, then the reassembly of these packets on the other side will correctly result in the original plaintext.

“We have proved that works, that there are no mistakes in the assembly/reassembly algorithms,” Leino said. In unverified software, he explained, encryption keys could be applied in the wrong order during assembly, which would make reassembly impossible.

This proof, he added, could give AWS customers greater confidence in applications built with the tool. While there might be other pieces of software in the application that have not gone through the rigor of program verification and thus could have bugs, the piece of the application related to how encryption is applied and packets are assembled is verified correct.

A mentor for the ages

Program verification remains an active area of academic research, with new questions emerging as the discipline becomes more widely embraced. Leino is immersed in that research community and, in that capacity, regularly invites interns to work alongside him. Over the course of his career, 35 have accepted the invitation.

“I tend to work very closely with my interns,” he said. “Most interns I would meet with every day, and many of these 35 interns, we would work probably for an hour or so every day.”

That was the experience of Gaurav Parthasarathy, a PhD student in the programming methodology group in the department of computer science at ETH Zurich in Switzerland who interned with Leino during the summer of 2022. His research focuses on strengthening Boogie, the verification tool that Leino developed and used to build Dafny.

“Once a week we had longer discussions at the white board. It was often him presenting something or me presenting my progress and then us trying to brainstorm how we could solve certain problems,” Parthasarathy said.

Leino said he would often leave these discussions energized to experiment himself, devoting several hours to programming in search of solutions to problems. He looks for a similar passion in his interns.

“Most of the projects that I do involve a lot of programming. We don’t hire science interns to do programming, that’s not the point,” Leino said. “The point is to explore whatever ideas you have. To try them out, you have to do a lot of programming. And so, for me personally, it has always worked out better when programming is something the interns do very fluidly.”

Leino’s passion for programming, experimentation, and discussing the minutiae of program verification ad nauseum struck a chord with Parthasarathy.

“I always thought that if you’re an engineer or a scientist in industry, and you reach Rustan’s age, you move into a management position and you might lose a bit of the passion,” Parthasarathy said. “Rustan showed me that this does not have to be the case. He’s still implementing core features that are really hard to implement — he might be the only one that can even do it. He’s a real scientist at heart.”

Research areas

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
SE, Stockholm
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. The Prime Video Sye Protocol team is looking for an Applied Scientist. This person will deliver features that automatically detect and prevent video quality issues before they reach millions of customers worldwide. You will lead the design of models that scale to very large quantities of video data across multiple dimensions. You will embody scientific rigor, designing and executing experiments to demonstrate the technical effectiveness and business value of your methods. You will work alongside engineering teams to deliver your research into production systems that ensure premium streaming experiences for customers globally. You will have demonstrated technical, teamwork and communication skills, and a motivation to deliver customer value from your research. Our team offers exceptional opportunities for you to grow your technical and non-technical skills and make a global impact. Key job responsibilities - Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement to solve complex video defect detection challenges. - Collaborate with software engineers to integrate successful experimental results into Prime Video wide processes and production systems that operate at scale with minimal computational overhead. - Communicate results and insights to both technical and non-technical audiences, including presentations and written reports to stakeholders across engineering, operations, and content teams. A day in the life Your typical day starts investigating overnight video quality alerts and developing breakthrough detection algorithms. You'll collaborate with engineering teams on production deployment, analyze video data to uncover quality patterns, and work with transformers and video language models. About the team You'll join a team focused on delivering premium video experiences through scientific innovation. We build machine learning systems that automatically detect video quality issues across our global streaming platform, collaborating closely with engineering, operations, and content teams to solve video analysis challenges while ensuring customers never experience poor quality. Our team partners with leading universities to develop solutions and advance computer vision and machine learning techniques. We value scientific rigor whilst staying customer-focused, encouraging both innovative and practical solutions that scale globally. There are opportunities for high-impact publications and patent development that advance the entire field.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.