Rustan Leino, senior principal applied scientist, is seen standing in a lily field, he is smiling toward the camera
Rustan Leino is a senior principal applied scientist in the Automated Reasoning Group at Amazon Web Services. He specializes in program verification, the science of mathematically proving that a software program always functions correctly.

Rustan Leino provides proof that software is bug-free

As a senior principal applied scientist at Amazon Web Services, Leino is continuing his career as a leading expert in program verification.

In Rustan Leino’s ideal world, computer software always works as intended. In the real world, though, he knows that software engineers are people like him — they make mistakes as they write code. Some of these mistakes escape detection. As a result, the world is full of buggy software.

Leino is a senior principal applied scientist in the Automated Reasoning Group at Amazon Web Services (AWS) in Seattle. He specializes in program verification, the science of mathematically proving that a software program always functions correctly. The process of program verification, he noted, is expensive in terms of the hours spent on it — including training. Because of that, it’s done selectively.

Automated reasoning at Amazon
Meet Amazon Science’s newest research area.

“Software that is very important is a great place for verification, and AWS has many pieces of its infrastructure where you just don’t want any mistakes,” he said. “If you want to send a rocket to Mars, you get one chance. You really want it to work. AWS is a little bit like that — you really want it to work.”

Leino spent more than 20 years in industrial research labs studying and developing methods and programming languages for program verification. He joined AWS in 2017 for the opportunity to apply program verification in a setting with real-world impact while continuing to conduct research.

“It is a very happy place for me and a good match with the sorts of things I have expertise in and that AWS wants to do,” he said.

Programming math

Unbeknownst to Leino, he was on the road to a career in program verification as a pre-teen in the early 1980s. He loved math and found a parallel interest in the logic of computer programming. He spent hours each day writing gaming software in the programming language Basic. When he entered the University of Texas at Austin (UT Austin) for his undergraduate degree, he knew he wanted to study computers.

“I don’t think I really knew what computer science was other than it involved programming, but there was a richness to computer science that was revealed to me in college,” he said. “There was one class I took that had to do with program verification, and I really liked it.”

Program verification is a way to catch the mistakes software engineers make when they write programs. At one level, automated program verification tools work in a similar fashion to the way a spell checker works in a word processor.

Rustan Leino on writing verified software for production

“But in the word-processing sense, there’s no equivalent tool of something that says, ‘I’m trying to get my program to do the following,’ or, ‘I’m trying to make sure that my program always makes this particular property hold,’” Leino explained.

Such properties, he explained, are called invariants. To enforce invariants, programmers write specifications — that is, definitions of what a program is supposed to do. Program verification tools called verifiers compare a software program with its invariant specifications and try to find discrepancies or bugs.

“If you can mathematically prove that the program always lives up to those specifications — the things that you’re trying to establish — then you say that you verify the program, or you prove the program correct,” Leino said.

From industry to academia and back

Upon graduation from UT Austin in 1989, Leino got a job as a software developer at Microsoft, where he worked on the Windows operating system. While he was there, he became convinced that formally proving program correctness was going to become more important as computers grew increasingly interconnected.

At the time, program verification was confined to academic and industrial research labs. Leino went to the California Institute of Technology to study it, earning a master's and PhD in computer science along the way.

“When I think back to that, what on earth did I know about research at that time? I don’t know, but somehow in my head, I thought this is what I really wanted to do,” he recalled.

Rustan Leino is seen giving a speech at a wedding, he is holding a microphone and is looking to the side
Rustan Leino says his tenure with AWS has helped move "from using Dafny in research projects to using it in projects with industrial impact."
Sweet Face Photography

During an internship at the Digital Equipment Corporation (DEC), he worked with the late Greg Nelson, a computer scientist who was a pioneer in program verification. DEC hired Leino out of graduate school, and he, Nelson, and their colleagues developed tools such as the Extended Static Checker for Java, a verifier that checks for errors in programs written in Java.

“When a mentor believes in you and lets you develop what you’re good at, it really makes a huge difference,” Leino said of his time working with Nelson. “He did that for me.”

Leino returned to Microsoft in 2001 to join the company’s research lab. There, he developed the intermediate verification language Boogie, which is a building block for many modern program verifiers. Boogie also underpins the programming language Dafny, which Leino developed as a framework to do program verification from the ground up, instead of awkwardly bolting tools onto existing languages.

The research and scientific communities found Dafny useful for tackling a raft of specification challenges. Leino used it to teach program verification to computer scientists, noting that the built-in verification tools encourage programmers to write correct code. Over time, he added more functionalities to Dafny to address other specification challenges of interest to the research community.

“One day I woke up and realized this Dafny thing, it really can do a lot,” he said.

Applied science at AWS

AWS recruited Leino to apply his research on program verification to the Java programs that are mission critical for both internal and external AWS customers. The company saw the value of program verification for its customers and was willing to invest in the science behind it, Leino said.

What’s exciting is that we have now moved the needle from using Dafny in research projects to using it in projects with industrial impact.
Rustan Leino

A few years ago, he was working on a project at AWS that appeared well suited to the capabilities of Dafny. Since then, he’s been working on Dafny full time.

“What’s exciting is that we have now moved the needle from using Dafny in research projects to using it in projects with industrial impact,” Leino said.

For example, his team worked with an engineering group to use Dafny in writing the open-source AWS Encryption Software Development Kit (SDK) for the .NET developer platform. The AWS Encryption SDK is a client-side encryption library that simplifies the tasks of encrypting and decrypting data in cloud applications.

“It’s tricky to apply encryption correctly,” noted Leino. “If customers are going to rely on this library, then it makes sense to go beyond the already rigorous testing that software engineers always do. Program verification steps up the game by providing proofs that the library holds certain properties.”

The specification for one part of the library, for example, holds that when plaintext data is encrypted and broken down into smaller packets for transfer on a wire from one place to another, then the reassembly of these packets on the other side will correctly result in the original plaintext.

“We have proved that works, that there are no mistakes in the assembly/reassembly algorithms,” Leino said. In unverified software, he explained, encryption keys could be applied in the wrong order during assembly, which would make reassembly impossible.

This proof, he added, could give AWS customers greater confidence in applications built with the tool. While there might be other pieces of software in the application that have not gone through the rigor of program verification and thus could have bugs, the piece of the application related to how encryption is applied and packets are assembled is verified correct.

A mentor for the ages

Program verification remains an active area of academic research, with new questions emerging as the discipline becomes more widely embraced. Leino is immersed in that research community and, in that capacity, regularly invites interns to work alongside him. Over the course of his career, 35 have accepted the invitation.

“I tend to work very closely with my interns,” he said. “Most interns I would meet with every day, and many of these 35 interns, we would work probably for an hour or so every day.”

That was the experience of Gaurav Parthasarathy, a PhD student in the programming methodology group in the department of computer science at ETH Zurich in Switzerland who interned with Leino during the summer of 2022. His research focuses on strengthening Boogie, the verification tool that Leino developed and used to build Dafny.

“Once a week we had longer discussions at the white board. It was often him presenting something or me presenting my progress and then us trying to brainstorm how we could solve certain problems,” Parthasarathy said.

Leino said he would often leave these discussions energized to experiment himself, devoting several hours to programming in search of solutions to problems. He looks for a similar passion in his interns.

“Most of the projects that I do involve a lot of programming. We don’t hire science interns to do programming, that’s not the point,” Leino said. “The point is to explore whatever ideas you have. To try them out, you have to do a lot of programming. And so, for me personally, it has always worked out better when programming is something the interns do very fluidly.”

Leino’s passion for programming, experimentation, and discussing the minutiae of program verification ad nauseum struck a chord with Parthasarathy.

“I always thought that if you’re an engineer or a scientist in industry, and you reach Rustan’s age, you move into a management position and you might lose a bit of the passion,” Parthasarathy said. “Rustan showed me that this does not have to be the case. He’s still implementing core features that are really hard to implement — he might be the only one that can even do it. He’s a real scientist at heart.”

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.
US, WA, Bellevue
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The Alexa Sensitive Content Intelligence (ASCI) team owns the Responsible AI and customer feedback charters in Alexa+ and Classic Alexa across all device endpoints, modalities and languages. The mission of our team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, (3) build customer trust through generating appropriate interactions on sensitive topics, and (4) analyze customer feedback to gain insight and drive continuous improvement loops. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
Are you passionate to join an innovative team of scientists and engineers who use machine learning and AI techniques to create state-of-the-art solutions to help seller succeed on Amazon? The Selling Partner Growth org is looking for a Senior Applied Scientist to lead us on our mission to understand demand side signals on Amazon, and empower sellers to grow their business and provide a great customer experience. As a Senior Applied Scientist on our team of scientists and engineers, you will have opportunities to create significant impact on our systems, our business and most importantly, our customers as we take on challenges that can revolutionize the e-commerce industry. You will identify specific and actionable opportunities to solve business problems, propose state-of-the-art solutions and collaborate with engineering, and business teams for future innovation. You need to be a great translation between ambiguous business domains and rigorous scientific solutions, an expert at inventing and simplify, and a good communicator to surface insights and recommendations to audiences of varying levels of technical sophistication. Major responsibilities - Use machine learning and AI techniques to create scalable seller-facing solutions - Analyze and extract relevant information from large amounts of Amazon's historical business data to help automate and optimize key processes - Design, development and evaluation of highly innovative models - Work closely with software engineering teams to drive real-time model implementations and new feature creations To know more about Amazon science, Please visit https://www.amazon.science