Carlos Huertas, manager of machine learning on the Buyer Risk Prevention Team, is seen sitting at a table wearing sunglasses and a leather jacket
Carlos Huertas, manager of machine learning on the Buyer Risk Prevention Team, is a “discussion grandmaster” on Kaggle, where his avatar includes his signature sunglasses.

Scarce computing resources transformed Carlos Huertas into an optimization master

At Amazon, he develops machine learning models to help keeping Amazon stores safe and trustworthy for customers and selling partners.

Watching Iron Man as a college student in his hometown of Tijuana, Mexico, Carlos Huertas was struck by one character in particular: J.A.R.V.I.S., the butler-like artificial assistant embedded in Tony Stark’s armor.

Even though it was only a movie, Huertas knew it foreshadowed real-life potential.

“I was fascinated by that level of technology,” he says.

At the time, he was pursuing a bachelor’s degree in computer engineering at the Universidad Autónoma de Baja California. Inspired by J.A.R.V.I.S.’s impressive communication skills, Huertas decided to pursue a master’s in natural language processing (NLP) at the same university.

That early shift to artificial intelligence ultimately brought him to Amazon, where he is a manager of machine learning on the Buyer Risk Prevention Team in Seattle, which is responsible for protecting customers from fraud and abuse.

Doing more with less

The master’s program was challenging, as NLP requires a lot of hardware horsepower that wasn’t available to Huertas at the time.

Back then, you needed huge machines ... We were a very humble facility and had regular consumer computers, so it was hard for me to try to match what people were doing with more resources.
Carlos Huertas

“Back then, you needed huge machines to achieve interesting things, which I didn’t have,” he says. “We were a very humble facility and had regular consumer computers, so it was hard for me to try to match what people were doing with more resources.”

The limited computing resources forced him to think outside of the box and develop creative solutions to do more with less. The challenge energized him, and for his PhD, he turned to the field of machine learning optimization, specifically feature selection for high-dimensional spaces.

That area of machine learning involves designing algorithms that help a machine to focus solely on features that are relevant to a specific task. One example where feature selection may be used is the “cat vs dog” image classification task, a classic machine learning project for beginners that involves classifying photos as containing either a dog or a cat.

Those animals have numerous features, such as color, height, weight, tail, nose shape, and eye color. Humans use their knowledge of the world to understand what helps differentiate them. For example, size might be important as most dogs tend to be bigger, but tail might not be very useful, since both animals have it.

“How do we make sure a machine learns this on its own? Feature selection is the process to help the computer understand that some of the characteristics are more important than others, so it can focus on what matters most and achieve similar or even better level of performance without so much computing power,” Huertas says.

Solving customer problems with machine learning

Huertas routinely applies feature selection in his work at Amazon.

The Buyer Risk Prevention team, Huertas explains, is responsible for keeping Amazon stores safe and trustworthy for customers and selling partners.

“In the spirit of one of our main leadership principles, Customer Obsession, we are constantly innovating and never stop trying to get the best possible experience for all our customers,” he notes. “To this end, we identify pain points and tackle them with technology.”

In order to get it right for customers, in 2019 Amazon created a team to focus on mitigating issues customers might face when reaching out for support with their accounts; that’s the team Huertas currently leads. The team develops machine learning solutions that assist customers in resolving issues with their accounts.

“The algorithm will try to review the case on its own using artificial intelligence and determine the right action for the customer,” he says. “With this, we can provide much faster support.”

As Amazon grows, so too do the amount of data and the complexity of the systems. In that context, it is important to understand which features are relevant to determine whether an issue is legitimate or not.

“This is a perfect match for feature selection, where we ask: ‘Can we be smarter and have a selection of what we should focus on so that our models perform the best without scalability issues?’” he says.

Huertas’ team focuses on providing faster and more accurate responses to customers’ concerns about their account status.

Now, customers who may have encountered issues can reclaim access without having to navigate a complex process. Huertas thinks of his own parents, who are Amazon customers but may have a hard time using third-party systems, such as email, to communicate with Amazon.

Huertas says his background as an assistant professor at Universidad Autónoma de Baja California, where he taught object-oriented programming and web development, helped shape him into a team player and a leader.

“In academia, we have this common phrase that the student doesn't fail, it is the professor who fails,” Huertas says. “When I was a professor, I felt this need to push my students forward. And that's something that I still carry with me on my team. I feel a lot of satisfaction seeing my team members develop.”

Discussion grandmaster on Kaggle

Back when Huertas was a PhD student, he joined Kaggle, an online data science and machine learning community. His goal: use the platform to test some of his PhD ideas and see how they fared against real-life problems. Because of his frequent interactions on the platform, where he still serves as a mentor to many of his peers, he holds the title of “discussion grandmaster” and was once one of the five most active users in the forum — among almost 5 million users.

Carlos Huertas (NxGTR) | Kaggle Grandmaster Interview | Kaggle Days

“The community has always been very friendly, and newcomers ask a lot of questions on how to get started,” he says.

At Kaggle, companies promote competitions to solve real-life machine-learning problems.

“It's especially useful when you're a student, because in academia you won't have access to the type of problems that Amazon might have. Getting exposure to those problems without the need to have a job there really helps you to develop your skills,” Huertas says.

In one of those competitions, when Huertas was still a PhD student, he ended up in the top 9 contestants among thousands of scientists around the world. He was competing with a laptop that, he recalls, “could barely run more than a browser.” The experience taught him a lot about how constraints can be empowering.

“It forced me to develop my own packages. And in the process, I learned how things work behind the scenes,” he says. When people have a lot of computing power, he notes, they might forget about the importance of optimization and rely on a lot of pre-built packages that might operate like a black-box.

“When you don't understand what is the magic happening behind the scenes, it is very hard to progress beyond that,” he says.

His prominence on Kaggle drew interest from ZestFinance, a Los Angeles-based company that offers underwriting analysis for lenders. After a stint building machine learning models for them, he joined Instacart where he helped launch the company’s first customer retention platform by building machine learning models to analyze which customers were more prone to abandon the platform.

Shortly after that Amazon recruiters reached out and he accepted a position on the Buyer Risk Prevention team.

“I like that Amazon puts a huge emphasis on matching your skills with the role,” Huerta says. “While other companies might have generic roles, like data scientist, Amazon has very specialized roles, such as applied scientist, research scientist, data engineer, machine learning engineer. That ensures that you're going to focus exactly on what you like.”

Amazon is looking for data scientists, economists, research scientists, and other positions to help advance the state of the art in customer-obsessed science.

The advice he provides younger scientists is to always practice what you learn in academia in a real-life setting. He compares it with a sport: You can read several books about soccer, but if you’ve never kicked a ball, it will be very tough to play it.

“It is very important that you materialize that theory into practice,” he says. “If you are still doing your PhD, there are platforms like Kaggle that will provide you with data so that you can practice your skills. By the time you complete your studies, you will have two or three years of technical experience in the field, working with real problems. That will take you very far.”

Related content

US, MA, Boston
As part of Alexa CAS team, our mission is to provide scalable and reliable evaluation of the state-of-the-art Conversational AI. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), to invent and build end-to-end evaluation of how customers perceive state-of-the-art context-aware conversational AI assistants. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc. As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel methods for evaluating conversational assistants. You will analyze and understand user experiences by leveraging Amazon’s heterogeneous data sources and build evaluation models using machine learning methods. Key job responsibilities - Design, build, test and release predictive ML models using LLMs - Ensure data quality throughout all stages of acquisition and processing, including such areas as data sourcing/collection, ground truth generation, normalization, and transformation. - Collaborate with colleagues from science, engineering and business backgrounds. - Present proposals and results to partner teams in a clear manner backed by data and coupled with actionable conclusions - Work with engineers to develop efficient data querying and inference infrastructure for both offline and online use cases About the team Central Analytics and Research Science (CARS) is an analytics, software, and science team within Amazon's Conversational Assistant Services (CAS) organization. Our mission is to provide an end-to-end understanding of how customers perceive the assistants they interact with – from the metrics themselves to software applications to deep dive on those metrics – allowing assistant developers to improve their services. Learn more about Amazon’s approach to customer-obsessed science on the Amazon Science website, which features the latest news and research from scientists across the company. For the latest updates, subscribe to the monthly newsletter, and follow the @AmazonScience handle and #AmazonScience hashtag on LinkedIn, Twitter, Facebook, Instagram, and YouTube.
US, WA, Seattle
AWS Industry Products (IP) is a new AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for an Applied Scientist who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations domains. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems. Key job responsibilities Using your in-depth expertise in machine learning and generative AI, you will deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon.
DE, Berlin
The Community Feedback organization powers customer-generated features and insights that help customers use the wisdom of the community to make unregretted shopping decisions. Today our features include Customer Reviews, Content Moderation, and Customer Q&A (Ask), however our mission and charter are broader than these features. We are focused on building a rewarding and engaging experience for contributors to share their feedback, and providing shoppers with trusted insights based on this feedback to inform their shopping decision The Community Data & Science team is looking for a passionate, talented, and inventive Senior Applied Scientist with a background in AI, Gen AI, Machine Learning, and NLP to help build LLM solutions for Community Feedback. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team and are ready to make a lasting impact on the future of AI-powered shopping, we invite you to join us on this exciting journey to reshape shopping. Please visit https://www.amazon.science for more information. Key job responsibilities - As a Senior Applied Scientist, you will work on state-of-the-art technologies that will result in published papers. - However, you will not only theorize about the algorithms but also have the opportunity to implement them and see how they perform in the field. - Our team works on a variety of projects, including state-of-the-art generative AI, LLM fine-tuning, alignment, prompt engineering, and benchmarking solutions. - You will be also mentoring junior scientists on the team. About the team The Community Data & Science team focusses on analyzing, understanding, structuring and presenting customer-generated content (in the form of ratings, text, images and videos) to help customers use the wisdom of the community to make unregretted purchase decisions. We build and own ML models that help with i) shaping the community content corpus both in terms of quantity and quality, ii) extracting insights from the content and iii) presenting the content and insights to shoppers to eventually influence purchase decisions. Today, our ML models support experiences like content solicitation, submission, moderation, ranking, and summarization.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Within Sponsored Products, the Bidding team is responsible for defining and delivering a collection of advertising products around bid controls (dynamic bidding, bid recommendations, etc.) that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.
US, WA, Seattle
Ever wonder how you can keep the world’s largest selection also the world’s safest and legally compliant selection? Then come join a team with the charter to monitor and classify the billions of items in the Amazon catalog to ensure compliance with various legal regulations. The Classification and Policy Platform (CPP) team is looking for Applied Scientists to build technology to automatically monitor the billions of products on the Amazon platform. The software and processes built by this team are a critical component of building a catalog that our customers trust. As an Applied Scientist on the CPP team, you will train LLMs to solve customer problems, distill knowledge into optimized inference artifacts, and collaborate cross-functionally to deliver impactful solutions. This role offers the opportunity to push the boundaries of LLM capabilities and drive tangible value for our customers. The ideal candidate should possess exceptional technical skills, a startup-driven mindset, outstanding communication abilities to join our dynamic team. We believe that innovation is key to being the most customer-centric company. We innovate, publish, teach, and set strategy, while using Amazon's "working backwards" method to serve our customers.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun. Amazon Robotics is seeking students to join us for a 5-6 month internship (full-time, 40 hours per week) as Data Science Co-op. Please note that by applying to this role you would be considered for Data Scientist spring co-op and fall co-op roles on various Amazon Robotics teams. The internship/co-op project(s) and location are determined by the team the student will be working on. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics About the team Amazon empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.
US, CA, Santa Clara
Come join the AWS AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. We are located in the USA (Seattle, Pasadena, Bay Area). About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
Want to work on one of the highest priorities across Amazon Ads? This is your chance to help build a billion dollar business, innovate on a new product space, and have a positive impact on millions of views while working with industry-leading technologies. The Ad Catalyst team in Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital advertising solutions to over a million advertisers with the goal of helping our our hundreds of millions customers find and discover anything they want to buy. We start with the customer and work backwards in everything we do, including advertising. Our team owns researching, evaluating, ranking and serving personalized recommendation to each of our 1+ million advertisers using state of the art machine learning techniques ( e.g., deep learning, deep-reinforcement learning, causal modeling). Our team is placed centrally in the Advertising Experience organization which owns the advertising console, this provides us full-stack ownership giving scientists the satisfaction of seeing their work directly power advertiser experiences with measurable outcomes. If you’re interested in joining a rapidly growing team working to build a unique, highly respected advertising group with a relentless focus on the customer, you’ve come to the right place. This is a unique opportunity to get in early and drive significant portions of the technical roadmap and shape the research agenda of a billion+ dollar business. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment through both strong personal delivery and the ability to develop partnerships with science teams across the org. This is a high visibility leadership position where you will be the first principal scientist in a 400+ people org. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities - Be a thought leader and forward thinker, anticipating obstacles to success, helping avoid common failure modes, and holding us to a high standard of technical rigor and excellence in machine learning (ML). - Own and drive the most complex and strategic solutions across the business; responsible for many millions in revenue. - Own the dialogue with partner science teams - shape consensus in scientific research roadmap, modeling approaches evaluation and presentation of the science driven results to our advertisers. - Define evaluation methods and metrics that measure the effectiveness of advertising recommendations using a variety of science techniques (Randomized Control Trials, Causal Modeling, Reinforcement learning policy evaluation) - Research, build, and deploy innovative ML solutions; working across all technical disciplines. - Identify untapped, high-risk technical and scientific directions, and stimulate new research directions that you will deliver on. - Be responsible for communicating our ML innovations to the broader internal & external scientific communities. - Hire, mentor, and guide senior scientists. - Partner with engineering leaders to build efficient and scalable solutions. We are open to hiring candidates to work out of one of the following locations: New York, Seattle
US, CA, Santa Clara
AWS AI is looking for passionate, talented, and inventive Research Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! We are seeking a highly accomplished and visionary Data Science professional to join our team, leading our data science strategy for the Media Planning Science program. In this role, you will collaborate closely with business leaders, stakeholders, and cross-functional teams to drive the success of the program through data-driven solutions. You will be responsible for shaping the data science roadmap fostering a culture of data-driven decision-making, and delivering significant business impact through advanced analytics and cutting-edge data science methodologies. Key job responsibilities As a Data Scientist on this team, you will: 1. Develop and drive the data science strategy for the Media Planning Science program, aligning it with the program's objectives and overall business goals. 2. Identify high-impact opportunities within the program and lead the ideation, planning, and execution of data science initiatives to address them. 3. Solve real-world problems by getting and analyzing large amounts of data, diving deep to identify business insights and opportunities, design simulations and experiments, developing statistical and ML models by tailoring to business needs, and collaborating with Scientists, Engineers, BIE's, and Product Managers. 4. Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data 5. Apply statistical and machine learning knowledge to specific business problems and data. 6. Build decision-making models and propose solution for the business problem you define. 7. Formalize assumptions about how our systems are expected to work, create statistical definition of the outlier, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. 8. Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team The Media Planning Science team builds and deploys models that provide insights and recommendations for media planning. Our mission is to assist advertisers in activating plans that align with their goals. Our insights and recommendations leverage heuristic and machine learning models to simplify the complex tasks of forecasting, outcome prediction, budget planning, optimized audience selection and measurements for media planners. We integrate our insights into user interfaces and programmatic integrations via APIs, ensuring reliable data, timely delivery, and optimal advertising outcomes for our advertisers.