Jessie Handbury, an associate professor at University of Pennsylvania and Amazon Visiting Academic, is seen smiling with her arms crossed in a profile photo, there are large windows in the background
Jessie Handbury, an associate professor at University of Pennsylvania and Amazon Visiting Academic, is helping research answers to complex questions around employment, including open enrollment rates.

How economic data informs a more equitable employee experience at Amazon

Wharton professor Jessie Handbury lends her expertise to Amazon’s PXTCS Team as an Amazon Visiting Academic.

With one of the largest, most diverse, most distributed workforces in the world, Amazon faces a unique HR challenge: how to deliver a work experience that supports the needs of every employee.

Jessie Handbury, an associate professor at University of Pennsylvania’s Wharton School and Amazon Visiting Academic (AVA), is helping Amazon’s People, Experience, and Technology Central Science Team (PXTCS) better understand and respond to the unique, diverse needs of Amazon employees in every corner of the world. In her role as an AVA, Handbury helps her PXT colleagues — who include economists, computer scientists and other scientists — research answers to complex questions.

Handbury was attracted to the AVA program by her mentor, Justine Hastings, the vice president of science who leads PXTCS. The two shared a research interest in public economics and industrial organization, and Hastings mentored Handbury in her early years as an assistant professor at Wharton. When Handbury received tenure at Wharton, Hastings invited her to join the AVA program and apply her economics expertise to help Amazon deliver a better, more equitable employee experience.

Jessie Handbury on COVID and the future of cities

“Justine is thinking about how we can use science to make better business decisions as they relate to employees,” Handbury explains. “When she pitched it to me, it was, ‘How can we make Amazon employees' lives better?’ I think it was the combination of my background in applied economics and my work on spatial variation in prices, wages, and housing costs, generally, that matched Amazon’s needs.”

Today, she’s drawing on that extensive background to help craft a workplace experience that is truly valuable for Amazon employees across the globe.

“That’s the vision,” says Handbury. “How do we ensure work at Amazon is meaningful for employees and that they feel valued for their contributions and supported in their accomplishments? And how can we use Amazon’s scale to do that and use science, models, and economic data so we know what our employees need and we deliver it?” While the PXTCS team was researching these topics prior to Handbury joining as an AVA, her expertise has helped to accelerate those efforts.

One of the world’s most diversified workforces

Handbury works closely with the PXTCS team to design and roll out HR policies and programs that improve the experience of Amazon employees. With a research background melding labor and public economics, Handbury is well suited to help understand the varied needs of Amazon’s vast workforce.

Part of what we're trying to do is to recognize and understand the diverse skills, experiences, and goals of Amazon’s employees. We’re trying to find equitable ways to serve people with different preferences.
Jessie Handbury

That background includes research in urban economics, industrial organization, and international trade that has helped policymakers and urban planners promote equitable urban development. She has also helped shed light on how local amenities, land-use regulations, and transportation policies shape urban development patterns, housing prices, and household location choices.

“Part of what we're trying to do is to recognize and understand the diverse skills, experiences, and goals of Amazon’s employees,” says Handbury. “We’re trying to find equitable ways to serve people with different preferences.”

Related content
The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

Handbury and the PXTCS team employ data-driven tests and models to understand the unique needs of Amazon’s workforce, propose and test new solutions and offerings, gauge uptake and response, and predictably scale company-wide adoption. Handbury has expertise in spatial policies, which helps examine how a policy — whether from Amazon or government — might impact employees differently based on their location.

“Amazon needs to have employees in expensive cities like New York, Seattle, and San Francisco,” Handbury points out. “So what can Amazon do from an HR perspective to support those employees? And what can we, as scientists, do to represent the perspective of Amazon's employees and help provide benefits that make it easier for employees to live in those markets and work at Amazon?”

Examining open-enrollment rates

One example of Handbury’s data-driven approach at Amazon centers on the question of whether employees are opting into or updating their healthcare insurance options during open-enrollment periods and what might motivate those decisions.

“What we're working on now is to look at the data and examine how many Amazon employees are utilizing open-enrollment periods,” she explains. “We're looking at employee populations that tend to sign up more frequently versus those that do so less frequently and which have higher or lower participation rates."

That approach includes utilizing surveys to determine what factors may have played a role for employees who didn’t opt for insurance when they first joined Amazon.

Related content
How the Amazon Supply Chain Optimization Technologies principal economist uses his expertise in time series econometrics to forecast aggregate demand.

“We are hoping to learn why didn’t they didn't sign up, to try and see which factors were most salient," Handbury says. "These responses will help inform whether the process itself is a barrier to enrollment. If, for example, new hires didn’t sign up because they found the process hard to navigate or found the plans hard to understand, we can work to fix those issues for when those employees engage again during open-enrollment periods. Once we have identified what the key barriers are, we will test interventions to address them.”

Handbury notes the answer might be as simple as employees not being aware they can make updates.

“For some employees, there's a stickiness to healthcare insurance decisions," she says. "They make the decision on whether to sign up for certain benefits, particularly health insurance and different health insurance programs, when they're first hired; they don't make adjustments during the open-enrollment period. Simple nudges to encourage employees to look at the benefit offerings during open enrollment would help employees whose healthcare needs have changed to re-optimize to better match their current needs.”

Another contributing factor may be found in the sometimes daunting task of parsing and comparing various healthcare options.

“Sometimes the language around health insurance programs can be difficult to understand, particularly when assessing exactly what the costs and benefits are,” she explains. “Is this something that could be improved with some better materials or by pairing employees with benefits experts who can help walk them through the sign-up process?”

Handbury notes that the answers to those questions are not trivial, either. “We’re figuring out whether we need to tailor the way that benefits are introduced to employees in a way that enables them to really reap the benefits that are being offered, should they want them.”

Explaining the world with models

Born and raised in Australia, Handbury came to the U.S. for university, in part because she wasn’t sure what she wanted to do after college.

“In Australia, most of the undergraduate degrees were professional,” she recalls. “The people who did well in high school would go into law or medicine. I didn't know what I wanted to do and was fortunate enough to come to America and ‘hit pause’ on that decision.”

Handbury became intrigued by data and models, which led to her pursuit of economics. During her undergraduate years at Columbia University, where she earned a bachelor’s in economics and mathematics, Handbury studied international trade and the underlying theories about how the economy works.

“The beauty of economics is you can explain what’s happening in the world with models. There are patterns in the data, and you can understand those patterns with simple, elegant theories,” says Handbury.

After stints at the U.N. and an economics consulting firm, Handbury returned to Columbia to pursue a PhD in economics. “I spent my early 20s playing with data — learning and modeling — and I realized that I wanted to go into research and get my PhD.”

Handbury says she thoroughly enjoys the collaboration with Amazon because it gives her more opportunities for mentorship. “It’s wonderful to be able to work with such a range of teams and a range of questions. A lot of our PhD students are going to become scientists and economists at large firms like Amazon.”

As far as advice she’d give to future scientists, Handbury keeps it simple: focus on what you enjoy. “Not every day is going to be fun, but for the most part you want your work to be something you look forward to sitting down to each day,” she says. “If you enjoy the journey you’re taking and the people you’re taking it with, then successful outcomes are just the icing on the cake.”

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.