Amazon senior principal engineer Luu Tran is seen sitting indoors, staring into the camera while smiling, he is wearing a sweater over a dress shirt and there are chairs, a desk, and a whiteboard in the background
Amazon senior principal engineer Luu Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more.

Writing Alexa’s next chapter by combining engineering and science

Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

For many of us, using our voices to interact with computers, phones, and other devices is a relatively new experience made possible by services like Amazon's Alexa.

But it’s old hat for Luu Tran.

An Amazon senior principal engineer, Tran has been talking to computers for more than three decades. An uber-early adopter of voice computing, Tran remembers the days when PCs came without sound cards, microphones, or even audio jacks. So he built his own solution.

“I remember when I got my first Sound Blaster sound card, which came with a microphone and software called Dragon Naturally Speaking,” Tran recalls.

With a little plug-and-play engineering, Tran could suddenly use his voice to open and save files on a mid-1990s-era PC. Replacing his keyboard and mouse with his voice was a magical experience and gave him a glimpse into the future of voice-powered computing.

Fast forward to 2023, and we’re in the the golden age of voice computing, made possible by advances in machine learning, AI, and voice assistants like Alexa. “Amazon’s vision for Alexa was always to be a conversational, natural personal assistant that knows you, understands you, and has some personality,” says Tran.

In his role, Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more. Now, he’s helping Amazon by facilitating collaboration between the company’s engineers and academic scientists who can help advance machine learning and AI — both full-time academics and those participating in Amazon’s Scholars and Visiting Academics programs.

Tran is no stranger to computing paradigm shifts. His previous experiences at Akamai, Mint.com, and Intuit gave him a front-row seat to some of tech’s most dramatic shifts, including the birth of the internet, the explosion of mobile, and the shift from on-premise to cloud computing.

Bringing his three decades of experience to bear in his role at Amazon, Tran is helping further explore the potential of voice computing by spurring collaborations between Amazon’s engineering and science teams. On a daily basis, Tran encourages engineers and scientists to work together as one — shoulder-to-shoulder — fusing the latest scientific research with cutting-edge engineering.

It's no accident Tran is helping lead Alexa’s next engineering chapter. Growing up watching Star Trek, he’d always been fascinated with the idea that you could speak to a computer and it could speak back using AI.

“I'd always believed that AI was out of reach of my career and lifetime. But now look at where we are today,” Tran says.

The science of engineering Alexa

Tran believes collaboration with scientists is essential to continued innovation, both with Alexa and AI in general.

I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real world constraints.
Luu Tran

“Bringing them together — the engineering and the science — is a powerful combination. Many of our projects are not simply deterministic engineering problems we can solve with more code and better algorithms,” he says. “We must bring to bear a lot of different tech and leverage science to fill in the gaps, such as machine learning modeling and training.”

Helping engineers and scientists work closely together is a nontrivial endeavor, because they often come from different backgrounds, have different goals and incentives, and in some cases even speak different “languages.” For example, Tran points out that the word “feature” means something very different to product managers and engineers than it does to scientists.

“I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real-world constraints. For me, it’s been less important to understand why something works than what works,” Tran says.

Related content
How Alexa scales machine learning models to millions of customers.

To realize the best of both worlds, Tran says, the Alexa team is employing an even more agile approach than it’s used in the past — assembling project teams of product managers, engineers, and scientists, often with different combinations based on the goal, feature, or tech required. There’s no dogma or doctrine stating what roles must be on a particular team.

What’s most important, Tran points out, is that each team understands from the outset the customer need, the use case, the product market fit, and even the monetization strategy. Bringing scientists into projects from the start is critical. “We always have product managers on teams with engineers and scientists. Some teams are split 50–50 between scientists and engineers. Some are 90% scientists. It just depends on the problem we're going after.”

The makeup of teams changes as projects progress. Some start out heavily weighted toward engineering and then determine a use case or problem that requires scientific research. Others start out predominantly science-based and, once a viable solution is in sight, gradually add more engineers to build, test, and iterate. This push/pull among how teams form and change — and the autonomy to organize and reorganize to iterate quickly — is key, Tran believes.

“Often, it’s still product managers who describe the core customer need and use case and how we're going to solve it,” Tran says. “Then the scientists will say, ‘Yeah, that's doable, or no, that's still science fiction.’ And then we iterate and kind of formalize the project. This way, we can avoid spending months and months trying to build something that, had we done the research up front, wasn’t possible with current tech.”

Engineering + science = Smarter recipe recommendations

A recent project that benefited from the new agile, collaborative approach is Alexa’s new recipe recommendation engine. To deliver a relevant recipe recommendation to a customer who asks for one — perhaps to an Amazon Echo Show on a kitchen counter — Alexa must select a single recipe from its vast collection while also understanding the customer’s desires and context. All of us have unique tastes, dietary preferences, potential food allergies, and real-time contextual factors, such as what’s in the fridge, what time of day it is, and how much time we have to prepare a meal.

This is not something you can build using brute force engineering, It requires a lot of science.
Luu Tran

Alexa, Tran explains, must factor all parameters into its recipe recommendation and — in milliseconds — return a recipe it believes is both highly relevant (e.g., a Mexican dish) and personal (e.g., no meat for vegetarian customers). The technology involved to respond with relevant, safe, satisfying recommendations for every customer is mind-bogglingly complex. “This is not something you can build using brute-force engineering,” Tran notes. “It requires a lot of science.”

Building the new recipe engine required two parallel projects: a new machine learning model trained to look through and select recipes from a corpus of millions of online recipes and a new inference engine to ensure each request Alexa receives is appended with de-identified personal and contextual data. “We broke it down, just like any other process of building software,” Tran says. “We wrote our plan, identified the tasks, and then decided whether each task was best handled by a scientist or an engineer, or maybe a combination of both working together.”

Tran says the scientists on the team largely focused on the machine learning model. They started by researching all existing, publicly available ML approaches to recipe recommendation — cataloguing the model types and narrowing them down based on what they believed would perform best. “The scientists looked at a lot of different approaches — Bayesian models, graph-based models, cross-domain models, neural networks, and collaborative filtering — and settled on a set of six models they felt would be best for us to try,” Tran explains. “That helped us quickly narrow down without having to exhaustively try every potential model approach.”

The engineers, meanwhile, got to work designing and building the new inference engine to better capture and analyze user signals, both implicit (e.g., time of day) and explicit (whether the user asked for a dinner or lunch recipe). “You don’t want to recommend cocktail recipes at breakfast time, but sometimes people want to eat pancakes for dinner,” jokes Tran.

Related content
A new method based on Transformers and trained with self-supervised learning achieves state-of-the-art performance.

The inference engine had to be built to accommodate queries from existing users and new users who’ve never asked for a recipe recommendation. Performance and privacy were key requirements. The engineering team had to design and deploy the engine to optimize throughput while minimizing computation and storage costs and complying with customer requests to delete personal information from their histories.

Once the new inference engine was ready, the engineers integrated it with the six ML models built and trained by the scientists, connected it to the new front-end interface built by the design team, and tested the models against each other to compare the results. Tran says all six models improved conversion (a “conversion event” is triggered when a user selects a recommended recipe) vs. baseline recommendations, but one model outperformed others by more than 100%. The team selected that model, which is in production today.

The recipe project doesn’t end here, though. Now that it’s live and in production, there’s a process of continual improvement. “We’re always learning from customer behavior. Which are the recipes that customers were really happy with? And which are the ones they never pick?” Tran says. “There's continued collaboration between engineers and scientists on that, as well, to refine the solution.”

The future: Alexa engineering powered by science

To further accelerate Alexa innovation, Amazon formed the Alexa Principal Community — a matrixed team of several hundred engineers and scientists who work on and contribute to Alexa and Alexa-related technologies. “We have people from all parts of the company, regardless of who they report to,” adds Tran. “What brings us together is that we’re working together on the technologies behind Alexa, which is fantastic.”

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Earlier this year, more than 100 members of that community convened, both in person and remotely, to share, discuss, and debate Alexa technology. “In my role as a member of the community’s small leadership team, I presented a few sessions, but I was mostly there to learn from, connect with, and influence my peers.”

Tran is thoroughly enjoying his work with scientists, and he feels he’s benefiting greatly from the collaboration. “Working closely with lots of scientists helps me understand what state-of-the-art AI is capable of so that I can leverage it in the systems that I design and build. But they also help me understand its limitations so that I don't overestimate and try to build something that's just not achievable in any realistic timeframe.”

Tran says that today, more than ever, is an amazing time to be at Alexa. “Imagination has been unlocked in the population and in our customer base,” he says. “So the next question they have is, ‘Where's Alexa going?’ And we're working as fast as we can to bring new features to life for customers. We have lots of things in the pipeline that we're working on to make that a reality.”

Research areas

Related content

US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.