Amazon senior principal engineer Luu Tran is seen sitting indoors, staring into the camera while smiling, he is wearing a sweater over a dress shirt and there are chairs, a desk, and a whiteboard in the background
Amazon senior principal engineer Luu Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more.

Writing Alexa’s next chapter by combining engineering and science

Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

For many of us, using our voices to interact with computers, phones, and other devices is a relatively new experience made possible by services like Amazon's Alexa.

But it’s old hat for Luu Tran.

An Amazon senior principal engineer, Tran has been talking to computers for more than three decades. An uber-early adopter of voice computing, Tran remembers the days when PCs came without sound cards, microphones, or even audio jacks. So he built his own solution.

“I remember when I got my first Sound Blaster sound card, which came with a microphone and software called Dragon Naturally Speaking,” Tran recalls.

With a little plug-and-play engineering, Tran could suddenly use his voice to open and save files on a mid-1990s-era PC. Replacing his keyboard and mouse with his voice was a magical experience and gave him a glimpse into the future of voice-powered computing.

Fast forward to 2023, and we’re in the the golden age of voice computing, made possible by advances in machine learning, AI, and voice assistants like Alexa. “Amazon’s vision for Alexa was always to be a conversational, natural personal assistant that knows you, understands you, and has some personality,” says Tran.

In his role, Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more. Now, he’s helping Amazon by facilitating collaboration between the company’s engineers and academic scientists who can help advance machine learning and AI — both full-time academics and those participating in Amazon’s Scholars and Visiting Academics programs.

Tran is no stranger to computing paradigm shifts. His previous experiences at Akamai, Mint.com, and Intuit gave him a front-row seat to some of tech’s most dramatic shifts, including the birth of the internet, the explosion of mobile, and the shift from on-premise to cloud computing.

Bringing his three decades of experience to bear in his role at Amazon, Tran is helping further explore the potential of voice computing by spurring collaborations between Amazon’s engineering and science teams. On a daily basis, Tran encourages engineers and scientists to work together as one — shoulder-to-shoulder — fusing the latest scientific research with cutting-edge engineering.

It's no accident Tran is helping lead Alexa’s next engineering chapter. Growing up watching Star Trek, he’d always been fascinated with the idea that you could speak to a computer and it could speak back using AI.

“I'd always believed that AI was out of reach of my career and lifetime. But now look at where we are today,” Tran says.

The science of engineering Alexa

Tran believes collaboration with scientists is essential to continued innovation, both with Alexa and AI in general.

I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real world constraints.
Luu Tran

“Bringing them together — the engineering and the science — is a powerful combination. Many of our projects are not simply deterministic engineering problems we can solve with more code and better algorithms,” he says. “We must bring to bear a lot of different tech and leverage science to fill in the gaps, such as machine learning modeling and training.”

Helping engineers and scientists work closely together is a nontrivial endeavor, because they often come from different backgrounds, have different goals and incentives, and in some cases even speak different “languages.” For example, Tran points out that the word “feature” means something very different to product managers and engineers than it does to scientists.

“I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real-world constraints. For me, it’s been less important to understand why something works than what works,” Tran says.

Related content
How Alexa scales machine learning models to millions of customers.

To realize the best of both worlds, Tran says, the Alexa team is employing an even more agile approach than it’s used in the past — assembling project teams of product managers, engineers, and scientists, often with different combinations based on the goal, feature, or tech required. There’s no dogma or doctrine stating what roles must be on a particular team.

What’s most important, Tran points out, is that each team understands from the outset the customer need, the use case, the product market fit, and even the monetization strategy. Bringing scientists into projects from the start is critical. “We always have product managers on teams with engineers and scientists. Some teams are split 50–50 between scientists and engineers. Some are 90% scientists. It just depends on the problem we're going after.”

The makeup of teams changes as projects progress. Some start out heavily weighted toward engineering and then determine a use case or problem that requires scientific research. Others start out predominantly science-based and, once a viable solution is in sight, gradually add more engineers to build, test, and iterate. This push/pull among how teams form and change — and the autonomy to organize and reorganize to iterate quickly — is key, Tran believes.

“Often, it’s still product managers who describe the core customer need and use case and how we're going to solve it,” Tran says. “Then the scientists will say, ‘Yeah, that's doable, or no, that's still science fiction.’ And then we iterate and kind of formalize the project. This way, we can avoid spending months and months trying to build something that, had we done the research up front, wasn’t possible with current tech.”

Engineering + science = Smarter recipe recommendations

A recent project that benefited from the new agile, collaborative approach is Alexa’s new recipe recommendation engine. To deliver a relevant recipe recommendation to a customer who asks for one — perhaps to an Amazon Echo Show on a kitchen counter — Alexa must select a single recipe from its vast collection while also understanding the customer’s desires and context. All of us have unique tastes, dietary preferences, potential food allergies, and real-time contextual factors, such as what’s in the fridge, what time of day it is, and how much time we have to prepare a meal.

This is not something you can build using brute force engineering, It requires a lot of science.
Luu Tran

Alexa, Tran explains, must factor all parameters into its recipe recommendation and — in milliseconds — return a recipe it believes is both highly relevant (e.g., a Mexican dish) and personal (e.g., no meat for vegetarian customers). The technology involved to respond with relevant, safe, satisfying recommendations for every customer is mind-bogglingly complex. “This is not something you can build using brute-force engineering,” Tran notes. “It requires a lot of science.”

Building the new recipe engine required two parallel projects: a new machine learning model trained to look through and select recipes from a corpus of millions of online recipes and a new inference engine to ensure each request Alexa receives is appended with de-identified personal and contextual data. “We broke it down, just like any other process of building software,” Tran says. “We wrote our plan, identified the tasks, and then decided whether each task was best handled by a scientist or an engineer, or maybe a combination of both working together.”

Tran says the scientists on the team largely focused on the machine learning model. They started by researching all existing, publicly available ML approaches to recipe recommendation — cataloguing the model types and narrowing them down based on what they believed would perform best. “The scientists looked at a lot of different approaches — Bayesian models, graph-based models, cross-domain models, neural networks, and collaborative filtering — and settled on a set of six models they felt would be best for us to try,” Tran explains. “That helped us quickly narrow down without having to exhaustively try every potential model approach.”

The engineers, meanwhile, got to work designing and building the new inference engine to better capture and analyze user signals, both implicit (e.g., time of day) and explicit (whether the user asked for a dinner or lunch recipe). “You don’t want to recommend cocktail recipes at breakfast time, but sometimes people want to eat pancakes for dinner,” jokes Tran.

Related content
A new method based on Transformers and trained with self-supervised learning achieves state-of-the-art performance.

The inference engine had to be built to accommodate queries from existing users and new users who’ve never asked for a recipe recommendation. Performance and privacy were key requirements. The engineering team had to design and deploy the engine to optimize throughput while minimizing computation and storage costs and complying with customer requests to delete personal information from their histories.

Once the new inference engine was ready, the engineers integrated it with the six ML models built and trained by the scientists, connected it to the new front-end interface built by the design team, and tested the models against each other to compare the results. Tran says all six models improved conversion (a “conversion event” is triggered when a user selects a recommended recipe) vs. baseline recommendations, but one model outperformed others by more than 100%. The team selected that model, which is in production today.

The recipe project doesn’t end here, though. Now that it’s live and in production, there’s a process of continual improvement. “We’re always learning from customer behavior. Which are the recipes that customers were really happy with? And which are the ones they never pick?” Tran says. “There's continued collaboration between engineers and scientists on that, as well, to refine the solution.”

The future: Alexa engineering powered by science

To further accelerate Alexa innovation, Amazon formed the Alexa Principal Community — a matrixed team of several hundred engineers and scientists who work on and contribute to Alexa and Alexa-related technologies. “We have people from all parts of the company, regardless of who they report to,” adds Tran. “What brings us together is that we’re working together on the technologies behind Alexa, which is fantastic.”

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Earlier this year, more than 100 members of that community convened, both in person and remotely, to share, discuss, and debate Alexa technology. “In my role as a member of the community’s small leadership team, I presented a few sessions, but I was mostly there to learn from, connect with, and influence my peers.”

Tran is thoroughly enjoying his work with scientists, and he feels he’s benefiting greatly from the collaboration. “Working closely with lots of scientists helps me understand what state-of-the-art AI is capable of so that I can leverage it in the systems that I design and build. But they also help me understand its limitations so that I don't overestimate and try to build something that's just not achievable in any realistic timeframe.”

Tran says that today, more than ever, is an amazing time to be at Alexa. “Imagination has been unlocked in the population and in our customer base,” he says. “So the next question they have is, ‘Where's Alexa going?’ And we're working as fast as we can to bring new features to life for customers. We have lots of things in the pipeline that we're working on to make that a reality.”

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.
US, WA, Bellevue
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The Alexa Sensitive Content Intelligence (ASCI) team owns the Responsible AI and customer feedback charters in Alexa+ and Classic Alexa across all device endpoints, modalities and languages. The mission of our team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, (3) build customer trust through generating appropriate interactions on sensitive topics, and (4) analyze customer feedback to gain insight and drive continuous improvement loops. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.