Amazon senior principal engineer Luu Tran is seen sitting indoors, staring into the camera while smiling, he is wearing a sweater over a dress shirt and there are chairs, a desk, and a whiteboard in the background
Amazon senior principal engineer Luu Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more.

Writing Alexa’s next chapter by combining engineering and science

Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

For many of us, using our voices to interact with computers, phones, and other devices is a relatively new experience made possible by services like Amazon's Alexa.

But it’s old hat for Luu Tran.

An Amazon senior principal engineer, Tran has been talking to computers for more than three decades. An uber-early adopter of voice computing, Tran remembers the days when PCs came without sound cards, microphones, or even audio jacks. So he built his own solution.

“I remember when I got my first Sound Blaster sound card, which came with a microphone and software called Dragon Naturally Speaking,” Tran recalls.

With a little plug-and-play engineering, Tran could suddenly use his voice to open and save files on a mid-1990s-era PC. Replacing his keyboard and mouse with his voice was a magical experience and gave him a glimpse into the future of voice-powered computing.

Fast forward to 2023, and we’re in the the golden age of voice computing, made possible by advances in machine learning, AI, and voice assistants like Alexa. “Amazon’s vision for Alexa was always to be a conversational, natural personal assistant that knows you, understands you, and has some personality,” says Tran.

In his role, Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more. Now, he’s helping Amazon by facilitating collaboration between the company’s engineers and academic scientists who can help advance machine learning and AI — both full-time academics and those participating in Amazon’s Scholars and Visiting Academics programs.

Tran is no stranger to computing paradigm shifts. His previous experiences at Akamai, Mint.com, and Intuit gave him a front-row seat to some of tech’s most dramatic shifts, including the birth of the internet, the explosion of mobile, and the shift from on-premise to cloud computing.

Bringing his three decades of experience to bear in his role at Amazon, Tran is helping further explore the potential of voice computing by spurring collaborations between Amazon’s engineering and science teams. On a daily basis, Tran encourages engineers and scientists to work together as one — shoulder-to-shoulder — fusing the latest scientific research with cutting-edge engineering.

It's no accident Tran is helping lead Alexa’s next engineering chapter. Growing up watching Star Trek, he’d always been fascinated with the idea that you could speak to a computer and it could speak back using AI.

“I'd always believed that AI was out of reach of my career and lifetime. But now look at where we are today,” Tran says.

The science of engineering Alexa

Tran believes collaboration with scientists is essential to continued innovation, both with Alexa and AI in general.

I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real world constraints.
Luu Tran

“Bringing them together — the engineering and the science — is a powerful combination. Many of our projects are not simply deterministic engineering problems we can solve with more code and better algorithms,” he says. “We must bring to bear a lot of different tech and leverage science to fill in the gaps, such as machine learning modeling and training.”

Helping engineers and scientists work closely together is a nontrivial endeavor, because they often come from different backgrounds, have different goals and incentives, and in some cases even speak different “languages.” For example, Tran points out that the word “feature” means something very different to product managers and engineers than it does to scientists.

“I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real-world constraints. For me, it’s been less important to understand why something works than what works,” Tran says.

Related content
How Alexa scales machine learning models to millions of customers.

To realize the best of both worlds, Tran says, the Alexa team is employing an even more agile approach than it’s used in the past — assembling project teams of product managers, engineers, and scientists, often with different combinations based on the goal, feature, or tech required. There’s no dogma or doctrine stating what roles must be on a particular team.

What’s most important, Tran points out, is that each team understands from the outset the customer need, the use case, the product market fit, and even the monetization strategy. Bringing scientists into projects from the start is critical. “We always have product managers on teams with engineers and scientists. Some teams are split 50–50 between scientists and engineers. Some are 90% scientists. It just depends on the problem we're going after.”

The makeup of teams changes as projects progress. Some start out heavily weighted toward engineering and then determine a use case or problem that requires scientific research. Others start out predominantly science-based and, once a viable solution is in sight, gradually add more engineers to build, test, and iterate. This push/pull among how teams form and change — and the autonomy to organize and reorganize to iterate quickly — is key, Tran believes.

“Often, it’s still product managers who describe the core customer need and use case and how we're going to solve it,” Tran says. “Then the scientists will say, ‘Yeah, that's doable, or no, that's still science fiction.’ And then we iterate and kind of formalize the project. This way, we can avoid spending months and months trying to build something that, had we done the research up front, wasn’t possible with current tech.”

Engineering + science = Smarter recipe recommendations

A recent project that benefited from the new agile, collaborative approach is Alexa’s new recipe recommendation engine. To deliver a relevant recipe recommendation to a customer who asks for one — perhaps to an Amazon Echo Show on a kitchen counter — Alexa must select a single recipe from its vast collection while also understanding the customer’s desires and context. All of us have unique tastes, dietary preferences, potential food allergies, and real-time contextual factors, such as what’s in the fridge, what time of day it is, and how much time we have to prepare a meal.

This is not something you can build using brute force engineering, It requires a lot of science.
Luu Tran

Alexa, Tran explains, must factor all parameters into its recipe recommendation and — in milliseconds — return a recipe it believes is both highly relevant (e.g., a Mexican dish) and personal (e.g., no meat for vegetarian customers). The technology involved to respond with relevant, safe, satisfying recommendations for every customer is mind-bogglingly complex. “This is not something you can build using brute-force engineering,” Tran notes. “It requires a lot of science.”

Building the new recipe engine required two parallel projects: a new machine learning model trained to look through and select recipes from a corpus of millions of online recipes and a new inference engine to ensure each request Alexa receives is appended with de-identified personal and contextual data. “We broke it down, just like any other process of building software,” Tran says. “We wrote our plan, identified the tasks, and then decided whether each task was best handled by a scientist or an engineer, or maybe a combination of both working together.”

Tran says the scientists on the team largely focused on the machine learning model. They started by researching all existing, publicly available ML approaches to recipe recommendation — cataloguing the model types and narrowing them down based on what they believed would perform best. “The scientists looked at a lot of different approaches — Bayesian models, graph-based models, cross-domain models, neural networks, and collaborative filtering — and settled on a set of six models they felt would be best for us to try,” Tran explains. “That helped us quickly narrow down without having to exhaustively try every potential model approach.”

The engineers, meanwhile, got to work designing and building the new inference engine to better capture and analyze user signals, both implicit (e.g., time of day) and explicit (whether the user asked for a dinner or lunch recipe). “You don’t want to recommend cocktail recipes at breakfast time, but sometimes people want to eat pancakes for dinner,” jokes Tran.

Related content
A new method based on Transformers and trained with self-supervised learning achieves state-of-the-art performance.

The inference engine had to be built to accommodate queries from existing users and new users who’ve never asked for a recipe recommendation. Performance and privacy were key requirements. The engineering team had to design and deploy the engine to optimize throughput while minimizing computation and storage costs and complying with customer requests to delete personal information from their histories.

Once the new inference engine was ready, the engineers integrated it with the six ML models built and trained by the scientists, connected it to the new front-end interface built by the design team, and tested the models against each other to compare the results. Tran says all six models improved conversion (a “conversion event” is triggered when a user selects a recommended recipe) vs. baseline recommendations, but one model outperformed others by more than 100%. The team selected that model, which is in production today.

The recipe project doesn’t end here, though. Now that it’s live and in production, there’s a process of continual improvement. “We’re always learning from customer behavior. Which are the recipes that customers were really happy with? And which are the ones they never pick?” Tran says. “There's continued collaboration between engineers and scientists on that, as well, to refine the solution.”

The future: Alexa engineering powered by science

To further accelerate Alexa innovation, Amazon formed the Alexa Principal Community — a matrixed team of several hundred engineers and scientists who work on and contribute to Alexa and Alexa-related technologies. “We have people from all parts of the company, regardless of who they report to,” adds Tran. “What brings us together is that we’re working together on the technologies behind Alexa, which is fantastic.”

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Earlier this year, more than 100 members of that community convened, both in person and remotely, to share, discuss, and debate Alexa technology. “In my role as a member of the community’s small leadership team, I presented a few sessions, but I was mostly there to learn from, connect with, and influence my peers.”

Tran is thoroughly enjoying his work with scientists, and he feels he’s benefiting greatly from the collaboration. “Working closely with lots of scientists helps me understand what state-of-the-art AI is capable of so that I can leverage it in the systems that I design and build. But they also help me understand its limitations so that I don't overestimate and try to build something that's just not achievable in any realistic timeframe.”

Tran says that today, more than ever, is an amazing time to be at Alexa. “Imagination has been unlocked in the population and in our customer base,” he says. “So the next question they have is, ‘Where's Alexa going?’ And we're working as fast as we can to bring new features to life for customers. We have lots of things in the pipeline that we're working on to make that a reality.”

Research areas

Related content

US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Research Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Research Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Research Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics
US, NY, New York
Amazon is looking for an Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase reliable access to supply, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As an Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Applied Scientist you will: - Set the scientific strategic vision for the team. You - - lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is central to Twitch's decision-making process, and data scientists are a critical component to evangelize data-driven decision making in all of our operations. As a data scientist at Twitch, you will be on the ground floor with your team, shaping the way product performance is measured, defining what questions should be asked, and scaling analytics methods and tools to support our growing business, leading the way for high quality, high velocity decisions for your team. For this role, we're looking for an experienced product data scientist who will help develop the strategy and evaluate/improve product initiatives within our Creator product team. You will be responsible to define and track KPIs, design experiments, evaluate A/B tests, implement data instrumentation, and inform on investment. Our ideal candidate is a "full-stack" data powerhouse who uses data to drive decision making to make the best products for our creators and their communities. Your input will be core to decision making across all major product strategies and initiatives that our team builds. You will work closely with product managers, technical program managers, engineering, data scientists, and organization leadership within and outside of the Creator organization. You Will - Inform product strategies by defining and updating core metrics for each initiative - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Evaluate and forecast impact of product features on creators, viewers, and the entire Twitch ecosystem - Design A/B experiments to drive product direction with iterative innovation and measurement - Drive the team's analysis roadmap and prioritize the most valuable projects - Tackle complex and ambiguous analytic projects, resolve ambiguity and accurately identify the trade-offs between speed and quality and apply or route work as necessary - Dive deep into the data to understand how creator and viewer behaviors change with the evolution of our product - Act as our team's thought leader on best practices and move towards long-term vision of sustainable and thriving data processes - Own data collection and product instrumentation implementation and quality assurance - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount About the team Twitch is all about community, and our Community Team is a core pillar of what makes Twitch, Twitch. Teams within Community are responsible for a myriad of product areas impacting the creator, viewer, and moderator journeys on our platform. As a member of our team, you'll build solutions that improve g the experience of millions of daily active users on our platform and create tools that keep both streamers and viewers engaged and connected on our platform.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, Santa Clara
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of structure-aware next generation systems that can reason over heterogenous data assets and reduce hallucination making AI systems reliable. The team develops AI systems that utilize structure exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. To accomplish this goal we are seeking scientists with expertise in large language models, graph machine learning, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for graph retrieval augmented generation, agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. A day in the life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. In 2019, Amazon co-founded The Climate Pledge and made a commitment to achieve net-zero carbon by 2040 —10 years ahead of the Paris Agreement. We invited others to join us and there are now more than 300 businesses and organizations across 51 industries and 29 countries that have signed the Pledge, which means we are collectively coming at the climate crisis from nearly every sector and nearly every angle. As part of our efforts to decarbonize our business, we became the world’s largest corporate purchaser of renewable energy in 2020, and last year, we reached 85% renewable energy across our business, and are on a path to power our operations with 100% renewable energy by 2025. We recently announced that AWS will be water positive by 2030, returning more water to communities than it uses in its direct operations. The company also announced its 2021 global water use efficiency (WUE) metric of 0.25 liters of water per kilowatt-hour, demonstrating AWS’s leadership in water efficiency among cloud providers. To learn more about AWS’s water+ commitment visit: Water Stewardship. Come join the team that is building the tools and innovative technology to manage our growing portfolio of renewable energy investments, including solar, on-shore and off-shore wind farms. Key job responsibilities As an data scientist, you will employ machine learning and analytics to create scalable solutions for problems in sustainable energy space. You will dissect large historical business data sets to enhance and streamline essential processes. You will partner with data and software teams to create models for predictive insights and establish automated methods for large data analysis. A day in the life To learn more, you can visit: amazon sustainability in the cloud About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Santa Clara
Are you passionate about applying automated reasoning and program analysis to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. We’re looking for an Applied Scientist to help strengthen our customers' security with automation for managed controls. AWS Identity provides the bedrock for secure and continuous access to all AWS services. By quickly connecting millions of users, across the world we empower organizations and enterprises to accelerate their cloud and digital transformation. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Key job responsibilities * Interact with various teams to develop an understanding of their security and safety requirements. * Apply the acquired knowledge to build tools and algorithms, find problems, or show the absence of security/safety problems. * Implement these capabilities through the use of Automated Reasoning and various concepts from programming languages. * Perform analysis of the customer systems using tools developed in-house or externally provided * Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.