Amazon senior principal engineer Luu Tran is seen sitting indoors, staring into the camera while smiling, he is wearing a sweater over a dress shirt and there are chairs, a desk, and a whiteboard in the background
Amazon senior principal engineer Luu Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more.

Writing Alexa’s next chapter by combining engineering and science

Amazon senior principal engineer Luu Tran is helping the Alexa team innovate by collaborating closely with scientist colleagues.

For many of us, using our voices to interact with computers, phones, and other devices is a relatively new experience made possible by services like Amazon's Alexa.

But it’s old hat for Luu Tran.

An Amazon senior principal engineer, Tran has been talking to computers for more than three decades. An uber-early adopter of voice computing, Tran remembers the days when PCs came without sound cards, microphones, or even audio jacks. So he built his own solution.

“I remember when I got my first Sound Blaster sound card, which came with a microphone and software called Dragon Naturally Speaking,” Tran recalls.

With a little plug-and-play engineering, Tran could suddenly use his voice to open and save files on a mid-1990s-era PC. Replacing his keyboard and mouse with his voice was a magical experience and gave him a glimpse into the future of voice-powered computing.

Fast forward to 2023, and we’re in the the golden age of voice computing, made possible by advances in machine learning, AI, and voice assistants like Alexa. “Amazon’s vision for Alexa was always to be a conversational, natural personal assistant that knows you, understands you, and has some personality,” says Tran.

In his role, Tran has overseen the plan-build-deploy-scale cycle for many Alexa features: timers, alarms, reminders, the calendar, recipes, Drop In, Announcements, and more. Now, he’s helping Amazon by facilitating collaboration between the company’s engineers and academic scientists who can help advance machine learning and AI — both full-time academics and those participating in Amazon’s Scholars and Visiting Academics programs.

Tran is no stranger to computing paradigm shifts. His previous experiences at Akamai, Mint.com, and Intuit gave him a front-row seat to some of tech’s most dramatic shifts, including the birth of the internet, the explosion of mobile, and the shift from on-premise to cloud computing.

Bringing his three decades of experience to bear in his role at Amazon, Tran is helping further explore the potential of voice computing by spurring collaborations between Amazon’s engineering and science teams. On a daily basis, Tran encourages engineers and scientists to work together as one — shoulder-to-shoulder — fusing the latest scientific research with cutting-edge engineering.

It's no accident Tran is helping lead Alexa’s next engineering chapter. Growing up watching Star Trek, he’d always been fascinated with the idea that you could speak to a computer and it could speak back using AI.

“I'd always believed that AI was out of reach of my career and lifetime. But now look at where we are today,” Tran says.

The science of engineering Alexa

Tran believes collaboration with scientists is essential to continued innovation, both with Alexa and AI in general.

I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real world constraints.
Luu Tran

“Bringing them together — the engineering and the science — is a powerful combination. Many of our projects are not simply deterministic engineering problems we can solve with more code and better algorithms,” he says. “We must bring to bear a lot of different tech and leverage science to fill in the gaps, such as machine learning modeling and training.”

Helping engineers and scientists work closely together is a nontrivial endeavor, because they often come from different backgrounds, have different goals and incentives, and in some cases even speak different “languages.” For example, Tran points out that the word “feature” means something very different to product managers and engineers than it does to scientists.

“I'm coming from the perspective of an engineer who has studied some theory but has worked for decades translating technology ideas into reality, within real-world constraints. For me, it’s been less important to understand why something works than what works,” Tran says.

Related content
How Alexa scales machine learning models to millions of customers.

To realize the best of both worlds, Tran says, the Alexa team is employing an even more agile approach than it’s used in the past — assembling project teams of product managers, engineers, and scientists, often with different combinations based on the goal, feature, or tech required. There’s no dogma or doctrine stating what roles must be on a particular team.

What’s most important, Tran points out, is that each team understands from the outset the customer need, the use case, the product market fit, and even the monetization strategy. Bringing scientists into projects from the start is critical. “We always have product managers on teams with engineers and scientists. Some teams are split 50–50 between scientists and engineers. Some are 90% scientists. It just depends on the problem we're going after.”

The makeup of teams changes as projects progress. Some start out heavily weighted toward engineering and then determine a use case or problem that requires scientific research. Others start out predominantly science-based and, once a viable solution is in sight, gradually add more engineers to build, test, and iterate. This push/pull among how teams form and change — and the autonomy to organize and reorganize to iterate quickly — is key, Tran believes.

“Often, it’s still product managers who describe the core customer need and use case and how we're going to solve it,” Tran says. “Then the scientists will say, ‘Yeah, that's doable, or no, that's still science fiction.’ And then we iterate and kind of formalize the project. This way, we can avoid spending months and months trying to build something that, had we done the research up front, wasn’t possible with current tech.”

Engineering + science = Smarter recipe recommendations

A recent project that benefited from the new agile, collaborative approach is Alexa’s new recipe recommendation engine. To deliver a relevant recipe recommendation to a customer who asks for one — perhaps to an Amazon Echo Show on a kitchen counter — Alexa must select a single recipe from its vast collection while also understanding the customer’s desires and context. All of us have unique tastes, dietary preferences, potential food allergies, and real-time contextual factors, such as what’s in the fridge, what time of day it is, and how much time we have to prepare a meal.

This is not something you can build using brute force engineering, It requires a lot of science.
Luu Tran

Alexa, Tran explains, must factor all parameters into its recipe recommendation and — in milliseconds — return a recipe it believes is both highly relevant (e.g., a Mexican dish) and personal (e.g., no meat for vegetarian customers). The technology involved to respond with relevant, safe, satisfying recommendations for every customer is mind-bogglingly complex. “This is not something you can build using brute-force engineering,” Tran notes. “It requires a lot of science.”

Building the new recipe engine required two parallel projects: a new machine learning model trained to look through and select recipes from a corpus of millions of online recipes and a new inference engine to ensure each request Alexa receives is appended with de-identified personal and contextual data. “We broke it down, just like any other process of building software,” Tran says. “We wrote our plan, identified the tasks, and then decided whether each task was best handled by a scientist or an engineer, or maybe a combination of both working together.”

Tran says the scientists on the team largely focused on the machine learning model. They started by researching all existing, publicly available ML approaches to recipe recommendation — cataloguing the model types and narrowing them down based on what they believed would perform best. “The scientists looked at a lot of different approaches — Bayesian models, graph-based models, cross-domain models, neural networks, and collaborative filtering — and settled on a set of six models they felt would be best for us to try,” Tran explains. “That helped us quickly narrow down without having to exhaustively try every potential model approach.”

The engineers, meanwhile, got to work designing and building the new inference engine to better capture and analyze user signals, both implicit (e.g., time of day) and explicit (whether the user asked for a dinner or lunch recipe). “You don’t want to recommend cocktail recipes at breakfast time, but sometimes people want to eat pancakes for dinner,” jokes Tran.

Related content
A new method based on Transformers and trained with self-supervised learning achieves state-of-the-art performance.

The inference engine had to be built to accommodate queries from existing users and new users who’ve never asked for a recipe recommendation. Performance and privacy were key requirements. The engineering team had to design and deploy the engine to optimize throughput while minimizing computation and storage costs and complying with customer requests to delete personal information from their histories.

Once the new inference engine was ready, the engineers integrated it with the six ML models built and trained by the scientists, connected it to the new front-end interface built by the design team, and tested the models against each other to compare the results. Tran says all six models improved conversion (a “conversion event” is triggered when a user selects a recommended recipe) vs. baseline recommendations, but one model outperformed others by more than 100%. The team selected that model, which is in production today.

The recipe project doesn’t end here, though. Now that it’s live and in production, there’s a process of continual improvement. “We’re always learning from customer behavior. Which are the recipes that customers were really happy with? And which are the ones they never pick?” Tran says. “There's continued collaboration between engineers and scientists on that, as well, to refine the solution.”

The future: Alexa engineering powered by science

To further accelerate Alexa innovation, Amazon formed the Alexa Principal Community — a matrixed team of several hundred engineers and scientists who work on and contribute to Alexa and Alexa-related technologies. “We have people from all parts of the company, regardless of who they report to,” adds Tran. “What brings us together is that we’re working together on the technologies behind Alexa, which is fantastic.”

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Earlier this year, more than 100 members of that community convened, both in person and remotely, to share, discuss, and debate Alexa technology. “In my role as a member of the community’s small leadership team, I presented a few sessions, but I was mostly there to learn from, connect with, and influence my peers.”

Tran is thoroughly enjoying his work with scientists, and he feels he’s benefiting greatly from the collaboration. “Working closely with lots of scientists helps me understand what state-of-the-art AI is capable of so that I can leverage it in the systems that I design and build. But they also help me understand its limitations so that I don't overestimate and try to build something that's just not achievable in any realistic timeframe.”

Tran says that today, more than ever, is an amazing time to be at Alexa. “Imagination has been unlocked in the population and in our customer base,” he says. “So the next question they have is, ‘Where's Alexa going?’ And we're working as fast as we can to bring new features to life for customers. We have lots of things in the pipeline that we're working on to make that a reality.”

Research areas

Related content

US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, East Palo Alto
Amazon Aurora DSQL is a serverless, distributed SQL database with virtually unlimited scale, highest availability, and zero infrastructure management. Aurora DSQL provides active-active high availability, providing strong data consistency designed for 99.99% single-Region and 99.999% multi-Region availability. Aurora DSQL automatically manages and scales system resources, so you don't have to worry about maintenance downtime and provisioning, patching, or upgrading infrastructure. As a Senior Applied Scientist, you will be expected to lead research and development in advanced query optimization techniques for distributed sql services. You will innovate in the query planning and execution layer to help Aurora DSQL succeed at delivering high performance for complex OLTP workloads. You will develop novel approaches to stats collection, query planning, execution and optimization. You will drive industry leading research, publish your research and help convert your research into implementations to make Aurora DSQL the fastest sql database for OLTP workloads. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for innovation, data, search, analytics, and distributed systems. You’ll also: Solve challenging technical problems, often ones not solved before, at every layer of the stack. Design, implement, test, deploy and maintain innovative software solutions to transform service performance, durability, cost, and security. Build high-quality, highly available, always-on products. Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in software architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: Build high-impact solutions to deliver to our large customer base. Participate in design discussions, code review, and communicate with internal and external stakeholders. Work cross-functionally to help drive business decisions with your technical input. Work in a startup-like development environment, where you’re always working on the most important stuff. About the team Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge-sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects that help our team members develop your engineering expertise so you feel empowered to take on more complex tasks in the future. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Sunnyvale
The Region Flexibility Engineering (RFE) team builds and leverages foundational infrastructure capabilities, tools, and datasets needed to support the rapid global expansion of Amazon's SOA infrastructure. Our team focuses on robust and scalable architecture patterns and engineering best practices, driving adoption of ever-evolving and AWS technologies. RFE is looking for a passionate, results-oriented, inventive Data Scientist to refine and execute experiments towards our grand vision, influence and implement technical solutions for regional placement automation, cross-region libraries, and tooling useful for teams across Amazon. As a Data Scientist in Region Flexibility, you will work to enable Amazon businesses to leverage new AWS regions and improve the efficiency and scale of our business. Our project spans across all of Amazon Stores, Digital and Others (SDO) Businesses and we work closely with AWS teams to advise them on SDO requirements. As innovators who embrace new technology, you will be empowered to choose the right highly scalable and available technology to solve complex problems and will directly influence product design. The end-state architecture will enable services to break region coupling while retaining the ability to keep critical business functions within a region. This architecture will improve customer latency through local affinity to compute resources and reduce the blast radius in case of region failures. We leverage off the sciences of data, information processing, machine learning, and generative AI to improve user experience, automation, service resilience, and operational efficiency. Key job responsibilities As an RFE Data Scientist, you will work closely with product and technical leaders throughout Amazon and will be responsible for influencing technical decisions and building data-driven automation capabilities in areas of development/modeling that you identify as critical future region flexibility offerings. You will identify both enablers and blockers of adoption for region flex, and build models to raise the bar in terms of understanding questions related to data set and service relationships and predict the impact of region changes and provide offerings to mitigate that impact. About the team The Regional Flexibility Engineering (RFE) organization supports the rapid global expansion of Amazon's infrastructure. Our projects support Amazon businesses like Stores, Alexa, Kindle, and Prime Video. We drive adoption of ever-evolving and AWS and non-AWS technologies, and work closely with AWS teams to improve AWS public offerings. Our organization focuses on robust and scalable solutions, simple to use, and delivered with engineering best practices. We leverage and build foundational infrastructure capabilities, tools, and datasets that enable Amazon teams to delight our customers. With millions of people using Amazon’s products every day, we appreciate the importance of making our solutions “just work”.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.