-
AAAI 2025 Workshop on AI for Social Impact2025To the best of our knowledge, this work introduces the first framework for clustering longitudinal data by leveraging time-dependent causal representation learning. Clustering longitudinal data has gained significant attention across various fields, yet traditional methods often overlook the causal structures underlying observed patterns. Understanding how covariates influence outcomes is critical for policymakers
-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT), NeurIPS 20242024This paper introduces the confounded pure exploration transductive linear bandit (CPET-LB) problem. As a motivating example, often online services cannot directly assign users to specific control or treatment experiences either for business or practical reasons. In these settings, naively comparing treatment and control groups that may result from self-selection can lead to biased estimates of underlying
-
2024 Conference on Digital Experimentation @ MIT (CODE@MIT)2024There are different reasons why experimenters may want to randomize their experiment at a region level. In some cases, treatments cannot be turned on or off at the individual level, therefore requiring randomization at a group level, for which regions can be a good candidate. In other cases, experimenters may worry about network effects or other types of spillovers within a geographic area, and opt to randomize
-
2024 Conference on Digital Experimentation @ MIT (CODE@MIT)2024Online sites typically evaluate the impact of new product features on customer behavior using online controlled experiments (or A/B tests). For many business applications, it is important to detect heterogeneity in these experiments [1], as new features often have a differential impact by customer segment, product group, and other variables. Understanding heterogeneity can provide key insights into causal
-
2024 Conference on Digital Experimentation @ MIT (CODE@MIT)2024Many data-driven companies measure the impact of product groups and allocate resources across them based 2 on the estimated impacts of features they launch via A/B tests. In this doc, we show that, when based on a standard 3 frequentist estimator of the impact of features, this practice can significantly overstate the impact of product groups and 4 distort the allocation of resources. When this practice
Related content
-
December 16, 2024In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.
-
October 21, 2024Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.
-
April 30, 2024Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.
-
March 21, 2024The principal economist and his team address unique challenges using techniques at the intersection of microeconomics, statistics, and machine learning.
-
October 10, 2023The system has expanded from generating peak computation-load forecasts one year in advance to a series of forecasts that include per-minute forecasts several months into the future.
-
October 05, 2023Wharton professor Jessie Handbury lends her expertise to Amazon’s PXTCS Team as an Amazon Visiting Academic.